Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase–mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2−/− mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase–generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a “knockin” mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2−/− mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2−/− mice than to Msh2−/− mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR.
Somatic hypermutation and class switch recombination (CSR) contribute to the somatic diversification of antibodies. It has been shown that MutS homologue (Msh)6 (in conjunction with Msh2) but not Msh3 is involved in generating A/T base substitutions in somatic hypermutation. However, their roles in CSR have not yet been reported. Here we show that Msh6
−
/
− mice have a decrease in CSR, whereas Msh3
−
/
− mice do not. When switch regions were analyzed for mutations, deficiency in Msh6 was associated with an increase in transition mutations at G/C basepairs, mutations at RGYW/WRCY hotspots, and a small increase in the targeting of G/C bases. In addition, Msh6
−
/
− mice exhibited an increase in the targeting of recombination sites to GAGCT/GGGGT consensus repeats and hotspots in Sγ3 but not in Sμ. In contrast to Msh2
−
/
− mice, deficiency in Msh6 surprisingly did not change the characteristics of Sμ-Sγ3 switch junctions. However, Msh6
−
/
− mice exhibited a change in the positioning of Sμ and Sγ3 junctions. Although none of these changes were seen in Msh3
−
/
− mice, they had a higher percentage of large inserts in their switch junctions. Together, our data suggest that MutS homologues Msh2, Msh3, and Msh6 play overlapping and distinct roles during antibody diversification processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.