We have performed a high-resolution angle-resolved photoelectron spectroscopy study on the newly discovered superconductor Ba0.6K0.4Fe2As2 (Tc = 37 K). We have observed two superconducting gaps with different values: a large gap (∆ ∼ 12 meV) on the two small holelike and electron-like Fermi surface (FS) sheets, and a small gap (∼ 6 meV) on the large hole-like FS. Both gaps, closing simultaneously at the bulk transition temperature (Tc), are nodeless and nearly isotropic around their respective FS sheets. The isotropic pairing interactions are strongly orbital dependent, as the ratio 2∆/kBTc switches from weak to strong coupling on different bands. The same and surprisingly large superconducting gap due to strong pairing on the two small FSs, which are connected by the (π, 0) spin-density-wave vector in the parent compound, strongly suggests that the pairing mechanism originates from the inter-band interactions between these two nested FS sheets.
Intertwining exotic quantum order and nontrivial topology is at the frontier of condensed matter physics [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18] . A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for topological states in the context of the quantum anomalous Hall effect 5,6 and for the hidden matter in the pseudogap phase of cuprate superconductors 7,8 . However, the experimental realization of such topological charge order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover a topological charge order in a kagome superconductor 21-25 KV3Sb5. Through both lattice-sensitive topography and electronic-sensitive spectroscopic imaging, we observe a 2×2 superlattice, consistent with the star of David deformation in the underlying kagome lattice. Spectroscopically, an energy gap opens at the Fermi level, across which the charge modulation exhibits an intensity reversal, signaling a charge ordering. The strength of charge modulations further displays a clockwise or anticlockwise chiral anisotropy, which we demonstrate can be switched by an applied magnetic field. Our observations and theoretical analysis point to a topological charge order in the frustrated kagome lattice, which not only leads to a giant anomalous Hall effect, but can also be a strong precursor of unconventional superconductivity.
Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.
It has long been speculated that electronic flatband systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity 1-14 . Here we use scanning tunnelling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet 15-20 Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flatband. Increasing magnetic field up to ±8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects 21-25 tied to non-trivial flatband systems. We image the flatband peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spinorbit coupled flatband. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flatband superconductivity and anomalous quantum transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.