Accumulating evidence has highlighted the potential role of non-coding RNAs (ncRNAs) and upstream open-reading frames (uORFs) in the biological behaviors of glioblastoma. Here, we elucidated the function and possible molecular mechanisms of the effect of some ncRNAs and NR2C2-uORF on the biological behaviors of gliomas. Quantitative real-time PCR was conducted to profile the cell expression of lnc-UCA1 and microRNA-627-5p (miR-627-5p) in glioma tissues and cells. Western blot assay was used to determine the expression levels of NR2C2, SPOCK1, and NR2C2-uORF in glioma tissues and cells. Stable knockdown of lnc-UCA1 or overexpression of miR-627-5p in glioma cell lines (U87 and U251) were established to explore the function of lnc-UCA1 and miR-627-5p in glioma cells. Further, Dual luciferase report assay was used to investigate the correlation between lnc-UCA1 and miR-627-5p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate lnc-UCA1 and miR-627-5p function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between NR2C2 and SPOCK1 as well as NR2C2 between lnc-UCA1. This study confirmed that lnc-UCA1 was up-regulated in glioma tissues and cells. UCA1 knockdown inhibited the malignancies of glioma cells by reducing proliferation, migration, and invasion, but inducing apoptosis. We found that lnc-UCA1 acted as miR-627-5p sponge in a sequence-specific manner. Meanwhile, upregulated lnc-UCA1 inhibited miR-627-5p expression. In addition, miR-627-5p targeted 3′UTR of NR2C2 and down-regulated its expression. Moreover, UCA1 knockdown impaired NR2C2 expression by upregulating miR-627-5p. An uORF was identified in mRNA 5'UTR of NR2C2 and overexpression of whom negatively regulated NR2C2 expression. Remarkably, lnc-UCA1 knockdown combined with uORF overepression and NR2C2 knockdown led to severe tumor suppression in vivo. This study demonstrated that the NR2C2-uORF impaired the pivotal roles that UCA1-miR-627-5p-NR2C2 feedback loop had in regulating the malignancies of glioma cells by targeting NR2C2 directly. And this may provide a potential therapeutic strategy for treating glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.