Molecular dynamics simulation is important in the computational study of the biomolecules. In this paper, we upgrade our previous FSATOOL to version 2.0. It is no longer a plugin as before. Besides the existed enhanced sampling and Markov state model analysis module, FSATOOL 2.0 has three new features now. First, it contains a molecular dynamics simulation engine on both CPU and GPU device. The engine works with an embedded enhanced sampling module. Second, it can do the free energy calculation by various practical methods, including the weighted histogram analysis method and Gaussian mixture model. Third, it has many subroutines to process the trajectory data, such as principal component analysis, time-structure based independent component analysis, contact analysis, and Φ-value analysis. Most importantly, all these calculations are integrated into one package. The trajectory data format is compatible with all the modules. With a proper input parameter file, users can do the molecular dynamics simulation and data analysis work by only a few simplified commands. The capabilities and theoretical backgrounds of FSATOOL 2.0 are introduced in the paper.
FSATOOL is an integrated molecular simulation and data analysis program. Its old molecular dynamics engine only supports simulations in vacuum or implicit solvent.In this work, we implement the well-known smooth particle mesh Ewald method for simulations in explicit solvent. The new developed engine is runnable on both CPU and GPU. All the existed analysis modules in the program are compatible with the new engine. Moreover, we also build a complete deep learning module in FSATOOL.Based on the module, we further implement two useful trajectory analysis methods: state-free reversible VAMPnets and time-lagged autoencoder. They are good at searching the collective variables related to the conformational transitions of biomolecules. In FSATOOL, these collective variables can be further used to construct a bias potential for the enhanced sampling purpose. We introduce the implementation details of the methods and present their actual performances in FSATOOL by a few enhanced sampling simulations.
In this work, we present SurfPB as a useful tool for the study of biomolecules. It can do many typical calculations, including the molecular surface, electrostatic potential, solvation free energy, entropy, and binding free energy. Among all of the calculations, the entropy calculation is the most timeconsuming one. In SurfPB, the calculation can be performed in a vacuum or implicit solvent and accelerated on GPU. The Poisson−Boltzmann equation solver is accelerated on GPU as well. Moreover, we developed a graphical user interface for SurfPB. It allows users to input the parameters and complete the whole calculation in a visual way. The calculated electrostatic potentials are shown on the molecular surface in a three-dimensional scene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.