In vertebrates, PIAS genes encode versatile cellular regulators, with functions extremely complex and redundant. Here we try to understand their functions from an evolutionary perspective. we evaluate the sequences, expression and molecular functions of amphioxus PIAS genes and compare them with their vertebrate counterparts. Phylogenetic analysis suggests a single PIAS gene in ancestral chordates, which has been duplicated into four families (PIAS1-4) in vertebrates by 2R-WGD but remained single in a basal chordate (amphioxus). Amphioxus PIAS encodes two variants with and without a Serine/Threonine-rich tail, which are retained in human PIAS1-3 but lost in PIAS4. We show that amphioxus PIAS binds C-terminus of NF-κB Rel and blocks the DNA binding activity. In humans, such function is retained in PIAS1, altered in PIAS4, and lost in PIAS2-3. Instead, PIAS3 has evolved new ability to inhibit Rel by binding RHD and promoting SUMOylation. We show that amphioxus PIAS also inhibits NF-κB by binding with upstream signalling adaptor TICAM-like and MyD88. Finally, we verify that human PIAS1, 3 and 4, but not 2, were capable of these newly-discovered functions. Our study offers insight into the sub- and neo-functionalization of PIAS genes and suggests a conserved ancient role for chordate PIAS in NF-κB signalling.
The apextrin C-terminal (ApeC) domain is a class of newly discovered protein domains with an origin dating back to prokaryotes. ApeC-containing proteins (ACPs) have been found in various marine and aquatic invertebrates, but their functions and the underlying mechanisms are largely unknown. Early studies suggested that amphioxus ACP1 and ACP2 bind to bacterial cell walls and have a role in immunity. Here we identified another two amphioxus ACPs (ACP3 and ACP5), which belong to the same phylogenetic clade with ACP1/2, but show distinct expression patterns and sequence divergence (40-50% sequence identities). Both ACP3 and ACP5 were mainly expressed in the intestine and hepatic cecum, and could be up-regulated after bacterial challenge. Both prokaryotic-expressed recombinant ACP3 and ACP5 could bind with several species of bacteria and yeasts, showing agglutinating activity but no microbicidal activity. ELISA assays suggested that their ApeC domains could interact with peptidoglycan (PGN), but not with lipoteichoic acid (LTA), lipopolysaccharides (LPS) and zymosan A. Furthermore, they can only bind to Lys-type PGN from Staphylococcus aureus, but not to DAP-type PGN from Bacillus subtilis and not to moieties of PGN such as MDPs, NAMs and NAGs. This recognition spectrum is different from that of ACP1/2. We also found that when expressed in mammalian cells, ACP3 could interact with TRAF6 via a conserved non-ApeC region, which inhibited the ubiquitination of TRAF6 and hence suppressed downstream NF-κB activation. This work helped define a novel subfamily of ACPs, which have conserved structures, and have related yet diversified molecular functions. Its members have dual roles, with ApeC as a lectin and a conserved unknown region as a signal transduction regulator. These findings expand our understanding of the ACP functions and may guide future research on the role of ACPs in different animal clades.
Lancelet (amphioxus) represents the most basally divergent extant chordate (cephalochordates) that diverged from the other two chordate lineages (urochordates and vertebrates) more than half a billion years ago. As it occupies a key position in evolution, it is considered as one of the best proxies for understanding the chordate ancestral state. Thus, the construction of a database with multiple lancelet genomes and gene annotation data, including protein domains, is urgently needed to investigate the loss and gain of domains in orthologues among species, especially ancient domain types (non-vertebrate-specific domains) and novel domain combination, which is helpful for providing new insight into the chordate ancestral state and vertebrate evolution. Here, we present an integrated genome database for lancelet, LanceletDB, which provides reference haploid genome sequence and annotation data for lancelet ( Branchiostoma belcheri ), including gene models and annotation, protein domain types, gene expression pattern in embryogenesis, different expression sequence tag sets and alternative polyadenylation (APA) sites profiled by the sequencing APA sites method. Especially, LanceletDB allows comparison of domain types and combination in orthologues among type species so as to decode the ancient domain types and novel domain combination during evolution. We also integrated the released diploid lancelet genome annotation data ( Branchiostoma floridae ) to expand LanceletDB and extend its usefulness. These data are available through the search and analysis page, basic local alignment search tool page and genome browser to provide an integrated display.
The chitin‐based peritrophic matrix (PM) is a structure critical for both gut immunity and digestion in invertebrates. PM was traditionally considered lost in all vertebrates, but a PM‐like chitinous membrane (CM) has recently been discovered in fishes, which may increase the knowledge on vertebrate gut physiology and structural evolution. Here, we show that in zebrafish, the CM affects ingestion behavior, microbial homeostasis, epithelial renewal, digestion, growth, and longevity. Young mutant fish without CM appear healthy and are able to complete their life cycle normally, but with increasing age they develop gut inflammation, resulting in gut atrophy. Unlike mammals, zebrafish have no visible gel‐forming mucin layers to protect their gut epithelia, but at least in young fish, the CM is not a prerequisite for the antibacterial gut immunity. These findings provide new insights into the role of the CM in fish prosperity and its eventual loss in tetrapods. These findings may also help to improve fish health and conservation, as well as to advance the understanding of vertebrate gut physiology and human intestinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.