This study aimed to develop risk scores based on clinical characteristics at presentation to predict intensive care unit (ICU) admission and mortality in COVID-19 patients. 641 hospitalized patients with laboratory-confirmed COVID-19 were selected from 4997 persons under investigation. We performed a retrospective review of medical records of demographics, comorbidities and laboratory tests at the initial presentation. Primary outcomes were ICU admission and death. Logistic regression was used to identify independent clinical variables predicting the two outcomes. The model was validated by splitting the data into 70% for training and 30% for testing. Performance accuracy was evaluated using area under the curve (AUC) of the receiver operating characteristic analysis (ROC). Five significant variables predicting ICU admission were lactate dehydrogenase, procalcitonin, pulse oxygen saturation, smoking history, and lymphocyte count. Seven significant variables predicting mortality were heart failure, procalcitonin, lactate dehydrogenase, chronic obstructive pulmonary disease, pulse oxygen saturation, heart rate, and age. The mortality group uniquely contained cardiopulmonary variables. The risk score model yielded good accuracy with an AUC of 0.74 ([95% CI, 0.63-0.85], p = 0.001) for predicting ICU admission and 0.83 ([95% CI, 0.73-0.92], p<0.001) for predicting mortality for the testing dataset. This study identified key independent clinical variables that predicted ICU admission and mortality associated with COVID-19. This risk score system may prove useful for frontline physicians in clinical decision-making under time-sensitive and resource-constrained environment.
The present study aimed to investigate changes in structural gray matter (GM) volume and functional amplitude of spontaneous low-frequency oscillations (LFO) and functional connectivity density in patients with subcortical vascular mild cognitive impairment (svMCI). Structural MRI and resting-sate functional MRI data were collected from 26 svMCI patients and 28 age- and gender-matched healthy controls. Structurally, widespread GM atrophy was found in the svMCI patients that resided primarily in frontal (e.g., the superior and middle frontal gyri and medial prefrontal cortex) and temporal (the superior and inferior temporal gyri) brain regions as well as several subcortical brain sites (e.g., the thalamus and the caudate). Functionally, svMCI-related changes were predominantly found in the default mode network (DMN). Compared with the healthy controls, the svMCI patients exhibited decreased LFO amplitudes in the anterior part of the DMN (e.g., the medial prefrontal cortex), whereas increased LFO amplitudes in the posterior part of the DMN (e.g., the posterior cingulate/precuneus). As for functional connectivity density, the DMN regions (e.g., the posterior cingulate/precuneus, the medial prefrontal cortex and the middle temporal gyrus) consistently exhibited decreased functional connectivity. Finally, the overall patterns of functional alterations in LFO amplitudes and functional connectivity density remained little changed after controlling for structural GM volume losses, which suggests that functional abnormalities can be only partly explained by morphological GM volume changes. Together, our results indicate that svMCI patients exhibit widespread abnormalities in both structural GM volume and functional intrinsic brain activity, which have important implications in understanding the pathophysiological mechanism of svMCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.