The accurate assessment of left ventricular systolic function is crucial in the diagnosis and treatment of cardiovascular diseases. Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) are the most critical indexes of cardiac systolic function. Echocardiography has become the mainstay of cardiac imaging for measuring LVEF and GLS because it is non-invasive, radiation-free, and allows for bedside operation and real-time processing. However, the human assessment of cardiac function depends on the sonographer’s experience, and despite their years of training, inter-observer variability exists. In addition, GLS requires post-processing, which is time consuming and shows variability across different devices. Researchers have turned to artificial intelligence (AI) to address these challenges. The powerful learning capabilities of AI enable feature extraction, which helps to achieve accurate identification of cardiac structures and reliable estimation of the ventricular volume and myocardial motion. Hence, the automatic output of systolic function indexes can be achieved based on echocardiographic images. This review attempts to thoroughly explain the latest progress of AI in assessing left ventricular systolic function and differential diagnosis of heart diseases by echocardiography and discusses the challenges and promises of this new field.
BackgroundContrast and non-contrast echocardiography are crucial for cardiovascular diagnoses and treatments. Correct view classification is a foundational step for the analysis of cardiac structure and function. View classification from all sequences of a patient is laborious and depends heavily on the sonographer’s experience. In addition, the intra-view variability and the inter-view similarity increase the difficulty in identifying critical views in contrast and non-contrast echocardiography. This study aims to develop a deep residual convolutional neural network (CNN) to automatically identify multiple views of contrast and non-contrast echocardiography, including parasternal left ventricular short axis, apical two, three, and four-chamber views.MethodsThe study retrospectively analyzed a cohort of 855 patients who had undergone left ventricular opacification at the Department of Ultrasound Medicine, Wuhan Union Medical College Hospital from 2013 to 2021, including 70.3% men and 29.7% women aged from 41 to 62 (median age, 53). All datasets were preprocessed to remove sensitive information and 10 frames with equivalent intervals were sampled from each of the original videos. The number of frames in the training, validation, and test datasets were, respectively, 19,370, 2,370, and 2,620 from 9 views, corresponding to 688, 84, and 83 patients. We presented the CNN model to classify echocardiographic views with an initial learning rate of 0.001, and a batch size of 4 for 30 epochs. The learning rate was decayed by a factor of 0.9 per epoch.ResultsOn the test dataset, the overall classification accuracy is 99.1 and 99.5% for contrast and non-contrast echocardiographic views. The average precision, recall, specificity, and F1 score are 96.9, 96.9, 100, and 96.9% for the 9 echocardiographic views.ConclusionsThis study highlights the potential of CNN in the view classification of echocardiograms with and without contrast. It shows promise in improving the workflow of clinical analysis of echocardiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.