Full-thickness skin wounds are a significant clinical burden in the United States. Skin bioprinting is a relatively new technology that is under investigation as a new treatment for full-thickness injuries, and development of hydrogels with strong physical and biological characteristics are required to improve both structural integrity of the printed constructs while allowing for a more normal extracellular matrix milieu. This project aims to evaluate the physical and biological characteristics of fibrinogen hydrogel supplemented with decellularized human skin-derived extracellular matrix (dsECM). The hybrid hydrogel improves the cell viability and structural strength of bioprinted skin constructs. Scanning electron microscopy demonstrates that the hybrid hydrogel is composed of both swelling bundles interlocked in a fibrin network, similar to healthy human skin. This hybrid hydrogel has improved rheological properties and shear thinning properties. Extrusion-based printing of the fibrinogen hydrogel + dsECM demonstrates significant improvement in crosshatch pore size. These findings suggest that incorporating the properties of dsECM and fibrinogen hydrogels will improve in vivo integration of the bioprinted skin constructs and support of healthy skin wound regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.