Streamwater was sampled at high flows from 14 catchments with different (0-78%) percentages of broadleaf woodland cover in acid-sensitive areas in the UK to investigate whether woodland cover affects streamwater acidification. Significant positive correlations were found between broadleaf woodland cover and streamwater NO3 and Al concentrations. Streamwater NO3 concentrations exceeded non-marine SO4 in three catchments with broadleaf woodland cover>or=50% indicating that NO3 was the principal excess acidifying ion in the catchments dominated by woodland. Comparison of calculated streamwater critical loads with acid deposition totals showed that 11 of the study catchments were not subject to acidification by acidic deposition. Critical loads were exceeded in three catchments, two of which were due to high NO3 concentrations in drainage from areas with large proportions of broadleaved woodland. The results suggest that the current risk assessment methodology should protect acid-sensitive catchments from potential acidification associated with broadleaf woodland expansion.
Water quality remains a main reason for the failure of waterbodies to reach Good Ecological Status (GES) under the European Union Water Framework Directive (WFD), with phosphorus (P) pollution being a major cause of water quality failures. Reducing P pollution risk in agricultural catchments is challenging due to the complexity of biophysical drivers along the source-mobilisation-delivery-impact continuum. While there is a need for place-specific interventions, the evidence supporting the likely effectiveness of mitigation measures and their spatial targeting is uncertain. We developed a decision-support tool using a Bayesian Belief Network that facilitates system-level thinking about P pollution and brings together academic and stakeholder communities to co-construct a model appropriate to the region of interest. The expert-based causal model simulates the probability of soluble reactive phosphorus (SRP) concentration falling into the WFD high/good or moderate/poor status classifications along with the effectiveness of three mitigation measures including buffer strips, fertiliser input reduction and septic tank management. In addition, critical source areas of pollution are simulated on 100 × 100 m raster grids for seven catchments (12–134 km2) representative of the hydroclimatic and land use intensity gradients in Scotland. Sensitivity analysis revealed the importance of fertiliser inputs, soil Morgan P, eroded SRP delivery rate, presence/absence of artificial drainage and soil erosion for SRP losses from diffuse sources, while the presence/absence of septic tanks, farmyards and the design size of sewage treatment works were influential variables related to point sources. Model validation confirmed plausible model performance as a “fit for purpose” decision support tool. When compared to observed water quality data, the expert-based causal model simulated a plausible probability of GES, with some differences between study catchments. Reducing fertiliser inputs below optimal agronomic levels increased the probability of GES by 5%, while management of septic tanks increased the probability of GES by 8%. Conversely, implementation of riparian buffers did not have an observable effect on the probability of GES at the catchment outlet. The main benefit of the approach was the ability to integrate diverse, and often sparse, information; account for uncertainty and easily integrate new data and knowledge.
Abstract. Pesticides are contaminants of priority concern that continue to present a significant risk to drinking water quality. While pollution mitigation in catchment systems is considered a cost-effective alternative to costly drinking water treatment, the effectiveness of pollution mitigation measures is uncertain and needs to be able to consider local biophysical, agronomic, and social aspects. We developed a probabilistic decision support tool (DST) based on spatial Bayesian belief networks (BBNs) that simulates inherent pesticide leaching risk to ground- and surface water quality to inform field-level pesticide mitigation strategies in a small (3.1 km2) drinking water catchment with limited observational data. The DST accounts for the spatial heterogeneity in soil properties, topographic connectivity, and agronomic practices; the temporal variability of climatic and hydrological processes; and uncertainties related to pesticide properties and the effectiveness of management interventions. The rate of pesticide loss via overland flow and leaching to groundwater and the resulting risk of exceeding a regulatory threshold for drinking water was simulated for five active ingredients. Risk factors included climate and hydrology (e.g. temperature, rainfall, evapotranspiration, and overland and subsurface flow), soil properties (e.g. texture, organic matter content, and hydrological properties), topography (e.g. slope and distance to surface water/depth to groundwater), land cover and agronomic practices, and pesticide properties and usage. The effectiveness of mitigation measures such as the delayed timing of pesticide application; a 10 %, 25 %, or 50 % reduction in the application rate; field buffers; and the presence/absence of soil pan on risk reduction were evaluated. Sensitivity analysis identified the month of application, the land use, the presence of buffers, the field slope, and the distance as the most important risk factors, alongside several additional influential variables. The pesticide pollution risk from surface water runoff showed clear spatial variability across the study catchment, whereas the groundwater leaching risk was uniformly low, with the exception of prosulfocarb. Combined interventions of a 50 % reduced pesticide application rate, management of the plough pan, delayed application timing, and field buffer installation notably reduced the probability of a high risk of overland runoff and groundwater leaching, with individual measures having a smaller impact. The graphical nature of BBNs facilitated interactive model development and evaluation with stakeholders to build model credibility, while the ability to integrate diverse data sources allowed a dynamic field-scale assessment of “critical source areas” of pesticide pollution in time and space in a data-scarce catchment, with explicit representation of uncertainties.
Abstract. Pesticides are contaminants of priority concern that continue to present a significant risk to drinking water quality. While pollution mitigation in catchment systems is considered a cost-effective alternative to costly drinking water treatment, the effectiveness of pollution mitigation measures is uncertain and needs to be able to consider local biophysical, agronomic, and social aspects. We developed a probabilistic decision support tool (DST) based on spatial Bayesian Belief Networks (BBN) that simulates inherent pesticide leaching risk to ground- and surface water quality to inform field-level pesticide mitigation strategies in a small drinking water catchment (3.1 km2) with limited observational data. The DST accounts for the spatial heterogeneity in soil properties, topographic connectivity, and agronomic practices; temporal variability of climatic and hydrological processes as well as uncertainties related to pesticide properties and the effectiveness of management interventions. The rate of pesticide loss via overland flow and leaching to groundwater and the resulting risk of exceeding a regulatory threshold for drinking water was simulated for five active ingredients. Risk factors included climate and hydrology (temperature, rainfall, evapotranspiration, overland and subsurface flow), soil properties (texture, organic matter content, hydrological properties), topography (slope, distance to surface water/depth to groundwater), land cover and agronomic practices, pesticide properties and usage. The effectiveness of mitigation measures such as delayed timing of pesticide application; 10 %, 25 % and 50 % reduction in application rate; field buffers; and presence/absence of soil pan on risk reduction were evaluated. Sensitivity analysis identified the month of application, land use, presence of buffers, field slope and distance as the most important risk factors, alongside several additional influential variables. Pesticide pollution risk from surface water runoff showed clear spatial variability across the study catchment, while groundwater leaching risk was uniformly low, with the exception of prosulfocarb. Combined interventions of 50 % reduced pesticide application rate, management of plough pan, delayed application timing and field buffer installation notably reduced the probability of high-risk from overland runoff and groundwater leaching, with individual measures having a smaller impact. The graphical nature of the BBN facilitated interactive model development and evaluation with stakeholders to build model credibility, while the ability to integrate diverse data sources allowed a dynamic field-scale assessment of ‘critical source areas’ of pesticide pollution in time and space in a data scarce catchment, with explicit representation of uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.