Study ObjectivesMillions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance.DesignWe subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long ‘rebound sleep’. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in ‘deprived’ and ‘rebound’ groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline.ResultsREMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during ‘rebound’ reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during ‘rebound’. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep.ConclusionsThe data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression.
The effects of the widely used selective serotonin reuptake inhibitor (SSRI) antidepressants on sleep have been intensively investigated. However, only a few animal studies examined the effect of escitalopram, the more potent S-enantiomer of citalopram, and conclusions of these studies on sleep architecture are limited due to the experimental design. Here, we investigate the acute (2 and 10 mg/kg, i.p. injected at the beginning of the passive phase) or chronic (10 mg/kg/day for 21 days, by osmotic minipumps) effects of escitalopram on the sleep and quantitative electroencephalogram (EEG) of Wistar rats. The first 3 h of EEG recording was analyzed at the beginning of passive phase, immediately after injections. The acutely injected 2 and 10 mg/kg and the chronically administered 10 mg/kg/day escitalopram caused an approximately three, six and twofold increases in rapid eye movement sleep (REMS) latency, respectively. Acute 2-mg/kg escitalopram reduced REMS, but increased intermediate stage of sleep (IS) while the 10 mg/kg reduced both. We also observed some increase in light slow wave sleep and passive wake parallel with a decrease in deep slow wave sleep and theta power in both active wake and REMS after acute dosing. Following chronic treatment, only the increase in REMS latency remained significant compared to control animals. In conclusion, adaptive changes in the effects of escitalopram, which occur after 3 weeks of treatment, suggest desensitization in the function of 5-HT(1A) and 5-HT(1B) receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.