Purpose Computer-aided polyp detection (CADe) systems for colonoscopy are already presented to increase adenoma detection rate (ADR) in randomized clinical trials. Those commercially available closed systems often do not allow for data collection and algorithm optimization, for example regarding the usage of different endoscopy processors. Here, we present the first clinical experiences of a, for research purposes publicly available, CADe system. Methods We developed an end-to-end data acquisition and polyp detection system named EndoMind. Examiners of four centers utilizing four different endoscopy processors used EndoMind during their clinical routine. Detected polyps, ADR, time to first detection of a polyp (TFD), and system usability were evaluated (NCT05006092). Results During 41 colonoscopies, EndoMind detected 29 of 29 adenomas in 66 of 66 polyps resulting in an ADR of 41.5%. Median TFD was 130 ms (95%-CI, 80–200 ms) while maintaining a median false positive rate of 2.2% (95%-CI, 1.7–2.8%). The four participating centers rated the system using the System Usability Scale with a median of 96.3 (95%-CI, 70–100). Conclusion EndoMind’s ability to acquire data, detect polyps in real-time, and high usability score indicate substantial practical value for research and clinical practice. Still, clinical benefit, measured by ADR, has to be determined in a prospective randomized controlled trial.
Background The efficiency of artificial intelligence as computer‐aided detection (CADe) systems for colorectal polyps has been demonstrated in several randomized trials. However, CADe systems generate many distracting detections, especially during interventions such as polypectomies. Those distracting CADe detections are often induced by the introduction of snares or biopsy forceps as the systems have not been trained for such situations. In addition, there are a significant number of non‐false but not relevant detections, since the polyp has already been previously detected. All these detections have the potential to disturb the examiner's work. Objectives Development and evaluation of a convolutional neuronal network that recognizes instruments in the endoscopic image, suppresses distracting CADe detections, and reliably detects endoscopic interventions. Methods A total of 580 different examination videos from 9 different centers using 4 different processor types were screened for instruments and represented the training dataset (519,856 images in total, 144,217 contained a visible instrument). The test dataset included 10 full‐colonoscopy videos that were analyzed for the recognition of visible instruments and detections by a commercially available CADe system (GI Genius, Medtronic). Results The test dataset contained 153,623 images, 8.84% of those presented visible instruments (12 interventions, 19 instruments used). The convolutional neuronal network reached an overall accuracy in the detection of visible instruments of 98.59%. Sensitivity and specificity were 98.55% and 98.92%, respectively. A mean of 462.8 frames containing distracting CADe detections per colonoscopy were avoided using the convolutional neuronal network. This accounted for 95.6% of all distracting CADe detections. Conclusions Detection of endoscopic instruments in colonoscopy using artificial intelligence technology is reliable and achieves high sensitivity and specificity. Accordingly, the new convolutional neuronal network could be used to reduce distracting CADe detections during endoscopic procedures. Thus, our study demonstrates the great potential of artificial intelligence technology beyond mucosal assessment.
Background and study aims Measurement of colorectal polyp size during endoscopy is mainly performed visually. In this work, we propose a novel polyp size measurement system (Poseidon) based on artificial intelligence (AI) using the auxiliary water jet as a measurement reference. Methods Visual estimation, biopsy forceps-based estimation, and Poseidon were compared using a CT-colonography-based silicone model with 28 polyps of defined sizes. Four experienced gastroenterologists estimated polyp sizes visually and with biopsy forceps. Furthermore, the gastroenterologists recorded images of each polyp with the water jet in proximity for the application of Poseidon. Additionally, Poseidon's measurements of 29 colorectal polyps during clinical routine were compared to visual estimates. Results Visual estimation had the largest median percentage error (PE) of 25.2% (95% confidence interval (CI95%): 19.1, 30.4), followed by biopsy forceps-based estimation with median 20% (14.4, 25.6) in the silicone model. Poseidon presented a significantly lower median PE of 7.4% (5, 9.4; p<0.001) than other methods. During routine colonoscopies, Poseidon presented a significantly lower median PE (7.7% 6.1, 9.3) than visual estimation (22.1% 15.1, 26.9; p<0.001). Conclusion In this work, we present a novel AI-based method for measuring colorectal polyp size with significantly higher accuracy than other common sizing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.