Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.
Biomolecular interactions compose a fundamental element of all life forms and are the biological basis of many biomedical assays. However, current methods for detecting biomolecular interactions have limitations in sensitivity and specificity. Here, using nitrogen-vacancy centers in diamond as quantum sensors, we demonstrate digital magnetic detection of biomolecular interactions with single magnetic nanoparticles (MNPs). We first developed a single-particle magnetic imaging (SiPMI) method on 100 nm-sized MNPs with negligible magnetic background, high signal stability, and accurate quantification. The single-particle method was performed on biotin−streptavidin interactions and DNA−DNA interactions in which a single-base mismatch was specifically differentiated. Subsequently, SARS-CoV-2-related antibodies and nucleic acids were examined by a digital immunomagnetic assay derived from SiPMI. In addition, a magnetic separation process improved the detection sensitivity and dynamic range by more than 3 orders of magnitude and also the specificity. This digital magnetic platform is applicable to extensive biomolecular interaction studies and ultrasensitive biomedical assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.