This paper represent a deep study of the Local Binary Pattern (LBP) method and its variants of patterns regrouping , which is largely used in texture classification as well in other domain. The analysis of LBP’s two hundred fifty-six patterns has led us to propose a new organization of uniform and no uniform patterns into twenty-eight groups; each group assembled a number of patterns varied according to specific terms. The principal idea is to preserve the low complexity of LBP and simultaneously increase the method robustness against quality degradation caused by image operations like rotation, grey level changes, illumination and mirror effects. The experiments are done with the two texture databases Outex and Brodatz; the tests are proving the robustness of Local Binary Pattern Regrouping (LBPG) under circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.