Motivation: Biclustering of transcriptomic data groups genes and samples simultaneously. It is emerging as a standard tool for extracting knowledge from gene expression measurements. We propose a novel generative approach for biclustering called ‘FABIA: Factor Analysis for Bicluster Acquisition’. FABIA is based on a multiplicative model, which accounts for linear dependencies between gene expression and conditions, and also captures heavy-tailed distributions as observed in real-world transcriptomic data. The generative framework allows to utilize well-founded model selection methods and to apply Bayesian techniques.Results: On 100 simulated datasets with known true, artificially implanted biclusters, FABIA clearly outperformed all 11 competitors. On these datasets, FABIA was able to separate spurious biclusters from true biclusters by ranking biclusters according to their information content. FABIA was tested on three microarray datasets with known subclusters, where it was two times the best and once the second best method among the compared biclustering approaches.Availability: FABIA is available as an R package on Bioconductor (http://www.bioconductor.org). All datasets, results and software are available at http://www.bioinf.jku.at/software/fabia/fabia.htmlContact: hochreit@bioinf.jku.atSupplementary information: Supplementary data are available at Bioinformatics online.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Although mixing patterns are crucial in dynamic transmission models of close contact infections, they are largely estimated by intuition. Using a convenience sample (n=73), we tested self-evaluation and prospective diary surveys with a web-based interface, in order to obtain social contact data. The number of recorded contacts was significantly (P<0.01) greater on workdays (18.1) vs. weekend days (12.3) for conversations, and vice versa for touching (5.4 and 7.2 respectively). Mixing was highly assortative with age for both (adults contacting other adults vs. 0- to 5-year-olds, odds ratio 8.9-10.8). Respondents shared a closed environment significantly more often with >20 other adults than with >20 children. The difference in number of contacts per day was non-significant between self-evaluation and diary (P=0.619 for conversations, P=0.125 for touching). We conclude that self-evaluation could yield similar results to diary surveys for general or very recent mixing information. More detailed data could be collected by diary, at little effort to respondents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.