Cellular functions are strongly dependent on surrounding cells and environmental factors. Current technologies are limited in their ability to characterize the spatial location and gene programs of cells in poorly structured and dynamic niches. We developed a method, NICHE-seq, that combines photoactivatable fluorescent reporters, two-photon microscopy, and single-cell RNA sequencing (scRNA-seq) to infer the cellular and molecular composition of niches. We applied NICHE-seq to examine the high-order assembly of immune cell networks. NICHE-seq is highly reproducible in spatial tissue reconstruction, enabling identification of rare niche-specific immune subpopulations and gene programs, including natural killer cells within infected B cell follicles and distinct myeloid states in the spleen and tumor. This study establishes NICHE-seq as a broadly applicable method for elucidating high-order spatial organization of cell types and their molecular pathways.
The molecular mechanism governing affinity-based B cell selection for germinal center colonization is unclear. Zaretsky et al. show that B cell ICAMs promote efficient B cell selection for clonal expansion by supporting sustained interactions with T follicular helper cells.
The germinal center (GC) reaction in Peyer′s patches (PP) requires continuous access to antigens, but how this is achieved is not known. Here we show that activated antigen-specific CCR6
+
CCR1
+
GL7
−
B cells make close contact with M cells in the subepithelial dome (SED). Using in situ photoactivation analysis of antigen-specific SED B cells, we find migration of cells towards the GC. Following antigen injection into ligated intestinal loops containing PPs, 40% of antigen-specific SED B cells bind antigen within 2 h, whereas unspecifc cells do not, indicating B cell-receptor involvment. Antigen-loading is not observed in M cell-deficient mice, but is unperturbed in mice depleted of classical dendritic cells (DC). Thus, we report a M cell-B cell antigen-specific transporting pathway in PP that is independent of DC. We propose that this antigen transporting pathway has a critical role in gut IgA responses, and should be taken into account when developing mucosal vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.