3D ball tracking is of great significance in ping-pong game analysis, which can be utilized to applications such as TV contents and tactic analysis, with some of them requiring real-time implementation. This paper proposes a CPU-GPU platform based Particle Filter for multiview ball tracking including 4 proposals. The multi-peak estimation and the ball-like observation model are proposed in the algorithm design. The multi-peak estimation aims at obtaining a precise ball position in case the particles' likelihood distribution has multiple peaks under complex circumstances. The ball-like observation model with 4 different likelihood evaluation, utilizes the ball's unique features to evaluate the particle's similarity with the target. In the GPU implementation, the double-queue structure and the vectorized data combination are proposed. The double-queue structure aims at achieving task parallelism between some data-independent tasks. The vectorized data combination reduces the time cost in memory access by combining 3 different image data to 1 vector data. Experiments are based on ping-pong videos recorded in an official match taken by 4 cameras located in 4 corners of the court. The tracking success rate reaches 99.59% on CPU. With the GPU acceleration, the time consumption is 8.8 ms/frame, which is sped up by a factor of 98 compared with its CPU version.
In real-time 3D ball tracking of sports analysis in computer vision technology, complex algorithms which assure the accuracy could be time-consuming. Particle filter based algorithm has a large potential to accelerate since the algorithm between particles has the chance to be paralleled in heterogeneous CPU-GPU platform. Still, with the target multi-view 3D ball tracking algorithm, challenges exist: 1) serial flowchart for each step in the algorithm; 2) repeated processing for multiple views' processing; 3) the low degree of parallelism in reweight and resampling steps for sequential processing. On the CPU-GPU platform, this paper proposes the double stream system flow, the view priority based threads allocation, and the binary search oriented reweight. Double stream system flow assigns tasks which there is no data dependency exists into different streams for each frame processing to achieve parallelism in system structure level. View priority based threads allocation manipulates threads in multi-view observation task. Threads number is view number multiplied by particles number, and with view priority assigning, which could help both memory accessing and computing achieving parallelism. Binary search oriented reweight reduces the time complexity by avoiding to generate cumulative distribution function and uses an unordered array to implement a binary search. The experiment is based on videos which record the final game of an official volleyball match (2014 Inter-High School Games of Men's Volleyball held in Tokyo Metropolitan Gymnasium in Aug. 2014) and the test sequences are taken by multiple-view system which is made of 4 cameras locating at the four corners of the court. The success rate achieves 99.23% which is the same as target algorithm while the time consumption has been accelerated from 75.1ms/frame in CPU environment to 3.05ms/frame in the proposed system which is 24.62 times speed up, also, it achieves 2.33 times speedup compared with basic GPU implemented work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.