CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCT␣ spanning residues 1-236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-Å structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the -phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.A key rate-limiting step in the synthesis of phosphatidylcholine in animal cells is the formation of the headgroup donor, CDP-choline, by transfer of a cytidylyl group from CTP to phosphocholine. This reaction is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT 4 ; EC 2.7.7.15), an enzyme subject to many layers of regulation (1-4). The ubiquitous and best studied isoform of mammalian CCT (CCT␣, 367 residues) has been described as having four domains (Fig. 1A). An N-terminal domain (ϳ75 residues) housing its nuclear localization signal (NLS) sequence is followed by an ϳ150-residue catalytic domain, an ϳ60-residue membrane binding domain (domain M), and an unstructured phosphorylated tail (ϳ50 residues) (2, 4). CCT functions as a homodimer (5).CCT activation requires transformation of the enzyme from a soluble form to a membrane lipid-bound form. When the full-length soluble CCT interacts with anionic membrane surfaces, domain M transforms from a mixture of structural elements into an amphipathic ␣-helix (6 -8). Domain M appears to act as an autoinhibitory device, whose interaction with phosphatidylcholine-deficient membranes releases an inhibitory constraint at the active site to enhance k cat by 2 orders of magnitude (9). The primary evidence for this model is the constitutive activity of a construct lacking domain M, CCT236 (9).To elucidate the mechanism whereby membrane binding activates this important re...
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.
CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the fulllength homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.Many amphitropic proteins have multiple membrane binding domains that serve to enhance binding affinity and to enable differential regulation by various lipid ligands. Multiple binding domains may in some cases enable a stepwise process leading to full activation of the enzyme. For example several protein kinase C isoforms have a C2 domain and two C1 domains that bind acidic lipids and diacylglycerol, respectively, with full activation dependent on engagement of both types of membrane binding modules (1). Other examples include phospholipase D 2 , which relies on both a PH 3 domain and a polybasic domain for targeting to phosphatidylinositol 4,5-bisphosphate-rich membranes (2) and phosphatidylinositol-phospholipase C , ␥, and ␦, which contain C2 and PH domains for recognition of and regulation by Ca 2ϩ and phosphatidylinositol 4,5-bisphosphate, respectively (3).CCT, the rate-limiting enzyme in PC synthesis, is a well studied amphitropic enzyme whose weak, reversible binding is mediated by domain M, a long amphipathic helix (4). Domain M is situated just downstream of the catalytic domain in the linear sequence and is followed by a flexible, unstructured domain housing multiple phosphorylation sites....
Background:The mechanism whereby CCT is auto-inhibited by its membrane-induced amphipathic helix (m-AH) is unknown. Results: m-AH regions sharing an amphipathic 22-mer element can be interchanged between CCTs with retention of catalytic silencing and activation by lipids. Conclusion:The 22-mer element is the principal auto-inhibitory motif. Significance: Multi-tasking and conformationally malleable motifs are widely used to regulate protein function; the CCT m-AH is a novel example of this.
CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme that controls phosphatidylcholine synthesis, is regulated by reversible interactions with membranes containing anionic lipids. Previous work demonstrated that CCT is a homodimer. In this work we show that the structure of the dimer interface is altered upon encountering membranes that activate CCT. Chemical cross-linking reactions were established which captured intradimeric interactions but not random CCT dimer collisions. The efficiency of capturing covalent cross-links with four different reagents was diminished markedly upon presentation of activating anionic lipid vesicles but not zwitterionic vesicles. Experiments were conducted to show that the anionic vesicles did not interfere with the chemistry of the cross-linking reactions and did not sequester available cysteine sites on CCT for reaction with the cysteine-directed cross-linking reagent. Thus, the loss of cross-linking efficiency suggested that contact sites at the dimer interface had increased distance or reduced flexibility upon binding of CCT to membranes. The regions of the enzyme involved in dimerization were mapped using three approaches: 1) limited proteolysis followed by cross-linking of fragments, 2) yeast two-hybrid analysis of interactions between select domains, and 3) disulfide bonding potential of CCTs with individual cysteine to serine substitutions for the seven native cysteines. We found that the Nterminal domain (amino acids 1-72) is an important participant in forming the dimer interface, in addition to the catalytic domain (amino acids 73-236). We mapped the intersubunit disulfide bond to the cystine 37 pair in domain N and showed that this disulfide is sensitive to anionic vesicles, implicating this specific region in the membrane-sensitive dimer interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.