Simultaneous localization and mapping (SLAM) is a fundamental problem for various applications. For indoor environments, planes are predominant features that are less affected by measurement noise. In this paper, we propose a novel point-plane SLAM system using RGB-D cameras. First, we extract feature points from RGB images and planes from depth images. Then plane correspondences in the global map can be found using their contours. Considering the limited size of real planes, we exploit constraints of plane edges. In general, a plane edge is an intersecting line of two perpendicular planes. Therefore, instead of line-based constraints, we calculate and generate supposed perpendicular planes from edge lines, resulting in more plane observations and constraints to reduce estimation errors. To exploit the orthogonal structure in indoor environments, we also add structural (parallel or perpendicular) constraints of planes. Finally, we construct a factor graph using all of these features. The cost functions are minimized to estimate camera poses and global map. We test our proposed system on public RGB-D benchmarks, demonstrating its robust and accurate pose estimation results, compared with other state-of-the-art SLAM systems.
Indoor service robots need to build an object-centric semantic map to understand and execute human instructions. Conventional visual simultaneous localization and mapping (SLAM) systems build a map using geometric features such as points, lines, and planes as landmarks. However, they lack a semantic understanding of the environment. This paper proposes an object-level semantic SLAM algorithm based on RGB-D data, which uses a quadric surface as an object model to compactly represent the object’s position, orientation, and shape. This paper proposes and derives two types of RGB-D camera-quadric observation models: a complete model and a partial model. The complete model combines object detection and point cloud data to estimate a complete ellipsoid in a single RGB-D frame. The partial model is activated when the depth data is severely missing because of illuminations or occlusions, which uses bounding boxes from object detection to constrain objects. Compared with the state-of-the-art quadric SLAM algorithms that use a monocular observation model, the RGB-D observation model reduces the requirements of the observation number and viewing angle changes, which helps improve the accuracy and robustness. This paper introduces a nonparametric pose graph to solve data associations in the back end, and innovatively applies it to the quadric surface model. We thoroughly evaluated the algorithm on two public datasets and an author-collected mobile robot dataset in a home-like environment. We obtained obvious improvements on the localization accuracy and mapping effects compared with two state-of-the-art object SLAM algorithms.
Occupied grid maps are sufficient for mobile robots to complete metric navigation tasks in domestic environments. However, they lack semantic information to endow the robots with the ability of social goal selection and human-friendly operation modes. In this paper, we propose an object semantic grid mapping system with 2D Light Detection and Ranging (LiDAR) and RGB-D sensors to solve this problem. At first, we use a laser-based Simultaneous Localization and Mapping (SLAM) to generate an occupied grid map and obtain a robot trajectory. Then, we employ object detection to get an object’s semantics of color images and use joint interpolation to refine camera poses. Based on object detection, depth images, and interpolated poses, we build a point cloud with object instances. To generate object-oriented minimum bounding rectangles, we propose a method for extracting the dominant directions of the room. Furthermore, we build object goal spaces to help the robots select navigation goals conveniently and socially. We have used the Robot@Home dataset to verify the system; the verification results show that our system is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.