Due to the emerging requirements of miniaturization and multifunctionality, monolithic devices with both functions of lighting and detection are essential for next-generation optoelectronic devices. In this work, based on freestanding (In,Ga)N films, we demonstrate a monolithic device with two functions of lighting and self-powered detection successfully. The freestanding (In,Ga)N film is detached from the epitaxial silicon (Si) substrate by a cost-effective and fast method of electrochemical etching. Due to the stress release and the lightening of the quantum-confined Stark effect (QCSE), the wavelength blueshift of electroluminescent (EL) peak is very small (<1 nm) when increasing the injection current, leading to quite stable EL spectra. On the other hand, the proposed monolithic bifunctional device can have a high ultraviolet/visible reject ratio (Q = 821) for self-powered detection, leading to the excellent detection selectivity. The main reason can be attributed to the removal of Si by the lift-off process, which can limit the response to visible light. This work paves an effective way to develop new monolithic multifunctional devices for both detection and display.
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single‐crystal X‐ray crystallography. In a freshly synthesized Au52(CHT)28 (CHT=S‐c−C6H11) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice‐compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2RR) compared to that exhibited by the same‐sized Au52(TBBT)32 (TBBT=4‐tert‐butyl‐benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2RR performance of the lattice‐compressed Au52(CHT)28 and provide a correlation between its structure and catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.