evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease 2019 (COVID-19), with over 84.66 million infections and 1.83 million deaths as reported on 3 January 2021 (refs. 1,2). SARS-CoV-2 is a positive-sense, single-stranded RNA virus. SARS-CoV-2 and several related beta-coronaviruses, including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), are highly pathogenic. Infections can lead to severe acute respiratory syndrome, loss of lung function and, in severe cases, death. Compared to SARS-CoV and MERS-CoV, SARS-CoV-2 has a higher capacity of human-to-human infections, which resulted in the rapidly growing pandemic 3. Finding an effective treatment for COVID-19, potentially also through drug repurposing, is an urgent but unmet medical need. Suramin (Fig. 1a) is a century-old drug that has been used to treat African sleeping sickness and river blindness 4,5. It has also been shown to be effective in inhibiting the replication of a wide range of viruses, including enteroviruses 6 , Zika virus 7 , Chikungunya 8 and Ebola viruses 9. The viral inhibition mechanisms of suramin are diverse, including inhibition of viral attachment, viral entry and release from host cells in part through interactions with viral capsid proteins 7,8,10,11. Recently, suramin has been shown to inhibit SARS-CoV-2 infection in cell culture by preventing cellular entry of the virus 12. Here we report that suramin is also a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), an essential enzyme for the viral life cycle. The potency of suramin in biochemical RdRp inhibition assays is at least 20-fold more potent than remdesivir, the current Food and Drug Administration-approved nucleotide drug for the treatment of COVID-19. The activity of suramin in cell-based viral inhibition is similar to remdesivir because the highly negative charge of suramin prevents efficient cellular uptake. A cryogenic electron microscopy (cryo-EM) structure reveals that suramin binds to the RdRp active site, blocking the binding of both RNA template and primer strands. These results provide a structural template for the design of next generation suramin derivatives as SARS-CoV-2 RdRp inhibitors. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin Wanchao Yin 1,
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.