Proton exchange membrane fuel cell (PEMFC) is a crucial route for energy saving, emission reduction and the development of new energy vehicles because of its high power density, high energy density as well as the low operating temperature which corresponds to fast starting and power matching. However, the rare and expensive Pt resource greatly hinders the mass production of fuel cell, and the development of highly active and durable non-precious metal catalysts toward the oxygen reduction reaction (ORR) in the cathode is considered to be the ultimate solution. In this article, a highly active and durable Fe-N-C catalyst was facilely derived from metal organic framework materials (MOFs), and a favorable structure of carbon nanotubes (CNTs) were formed, which accounts for a desired good durability. The as-optimized catalyst has a half-wave potential of 0.84V for the ORR, which is comparable to that of commercial Pt/C. More attractively, it has good stabilities both in rotating disk electrode and single cell tests, which provides a large practical application potential in the replacement of Pt catalyst as the ORR electrocatalyst in fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.