There are a large number of natural fractures in shale reservoirs, which create great challenges to hydraulic fracturing. Activating the natural fractures in reservoirs can form a complex fracture network, enhance fracturing effects, and increase shale gas production. Reservoir geological conditions (low in situ stress, natural fracture distribution, and cement strength) and operation parameters (fracturing fluid viscosity and injection rate) have an important influence on fracture network propagation. In this article, a two-dimensional hydraulic fracturing fluid-mechanic coupling numerical model for shale reservoirs with natural fractures was established. Based on the global cohesive zone model, the influence of geological conditions and operation parameters on the propagation of the hydraulic fracture network and fracturing process is investigated. The numerical simulation results show that when the horizontal in situ stress difference, approach angle, and cement strength are low, it is easier to form a complex fracture network. Research on the construction parameters indicated that when the viscosity of the fracturing fluid is low, it is easier to form a complex network of fractures, but the length of the fractures is shorter; in contrast, the fractures are straight and long. In addition, increasing the injection rate is beneficial for increasing the complexity of the fracture network while increasing the initiation pressure and width of the principal fracture reduces the risk of sand plugging. This article also proposes an optimization solution for hydraulic fracturing operations based on numerical simulation results.
Simultaneous multiple-fracture treatments in horizontal wellbores have become one of the key methods for economically and efficiently developing oil and gas resources in unconventional reservoirs. However, field data show that some perforation clusters have difficulty propagating fractures due to the internal mechanism of competing initiation and propagation among the fractures. In this paper, the physical mechanisms that influence simultaneous multiple-fracture initiation and propagation are investigated, and the effects of engineering parameters and in situ conditions on the nonuniform development of multiple fractures are discussed. A 3D fracture propagation model was established with ABAQUS to show the influence of the stress shadow effects and dynamic partitioning of the flow rate by simulating the propagation of multiple competing fractures generated in the perforation clusters. Based on the results of these simulations, simultaneous flow in multiple fractures can propagate evenly. Through adjusting the number of perforations in each cluster or the perforation diameter, the effect of the stress shadow can be significantly reduced by increasing the perforation friction, and the factors that affect the development of multiple fractures are changed, from the stress shadow effect to the dynamic partitioning of the flow rate. When the stress shadow effect is dominant, increasing the fracturing fluid viscosity promotes the uniform development of multiple fractures and increases the fracture width. When the dynamic partitioning of the flow rate is dominant, increasing the injection rate greatly affects the uniform development of multiple fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.