Abstract. This work is motivated by the monitoring of conductive clogging deposits in steam generator at the level of support plates. One would like to use monoaxial coils measurements to obtain estimates on the clogging volume. We propose a 3D shape optimization technique based on simplified parametrization of the geometry adapted to the measurement nature and resolution. The direct problem is modeled by the eddy current approximation of time-harmonic Maxwell's equations in the low frequency regime. A potential formulation is adopted in order to easily handle the complex topology of the industrial problem setting. We first characterize the shape derivatives of the deposit impedance signal using an adjoint field technique. For the inversion procedure, the direct and adjoint problems have to be solved for each coil vertical position which is excessively time and memory consuming. To overcome this difficulty, we propose and discuss a steepest descent method based on a fixed and invariant triangulation. Numerical experiments are presented to illustrate the convergence and the efficiency of the method.
International audienceWe study different strategies for the truncation of computational domains in the simulation of eddy current probes of elongated axisymmetric tubes. For axial fictitious boundaries, an exact Dirichlet-to-Neumann map is proposed and mathematically analyzed via a non-selfadjoint spectral problem: under general assumptions we show convergence of the solution to an eddy current problem involving a truncated Dirichlet-to-Neumann map to the solution on the entire, unbounded axisymmetric domain as the truncation parameter tends to infinity. Under stronger assumptions on the physical parameters of the eddy current problem, convergence rates are shown. We further validate our theoretical results through numerical experiments for a realistic physical setting inspired by eddy current probes of nuclear reactor core tubes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.