Photocatalytic reversible deactivation radical polymerization (RDRP) permits the use of sustainable solar light for spatiotemporal regulation of radical polymerization under mild conditions. Photocatalysts play a vital role for light absorption,...
Antifouling polymer brushes are widely used to inhibit the formation of protein corona on nanoparticles (NPs) and subsequent accumulation in the liver and spleen. Herein, we demonstrate a θ-solvent-mediated method for the preparation of gold nanoparticles with a high polyethylene glycol (PEG) grafting density. Reaching the θ-solvent by adding salt (e.g., Na 2 SO 4 ) can significantly increase the grafting density of the PEG brush to 2.08 chains/nm 2 . The PEG polymer brush prepared in the θ-solvent possesses a double-shell structure consisting of a concentrated polymer brush (CPB) and a semidilute polymer brush (SDPB), denoted as NP@ CPB@SDPB, while those prepared in a good solvent have only a SDPB shell, i.e., NP@SDPB. Compared to the NP@SDPB structure, the NP@CPB@SDPB structure decreases the liver accumulation from 34.0%ID/g to 23.1%ID/g, leading to an increase in tumor accumulation from 8.5%ID/g to 12.8%ID/g. This work provides new insights from the perspective of polymer physical chemistry into the improved stealth properties and delivery efficiency of NPs, which will accelerate the clinical translation of nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.