The circuit topology of a submodule (SM) in an modular multilevel converter (MMC) defines many of the functionalities of the complete power electronics conversion system and the specific applications that a specific MMC configuration can support. Most prominent among all applications for the MMC is its use in high-voltage direct current (HVDC) transmission systems and multiterminal dc grids. The aim of the paper is to provide a comprehensive review and classification of the many different SM circuit topologies that have been proposed for the MMC up to date. Using an 800-MVA, point-to-point MMC-based HVDC transmission system as a benchmark, the presented analysis identifies the limitations and drawbacks of certain SM configurations that limit their broader adoption as MMC SMs. A hybrid model of an MMC arm and appropriate implementations of voltage-balancing algorithms are used for detailed loss comparison of all SMs and to quantify differences among multiple SMs. The review also provides a comprehensive benchmark among all SM configurations, broad recommendations for the benefits and limitations of different SM topologies which can be further expanded based on the requirements of a specific application, and identifies future opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.