Medical Internet of Things, also well known as MIoT, is playing a more and more important role in improving the health, safety, and care of billions of people after its showing up. Instead of going to the hospital for help, patients' health-related parameters can be monitored remotely, continuously, and in real time, then processed, and transferred to medical data center, such as cloud storage, which greatly increases the efficiency, convenience, and cost performance of healthcare. The amount of data handled by MIoT devices grows exponentially, which means higher exposure of sensitive data. The security and privacy of the data collected from MIoT devices, either during their transmission to a cloud or while stored in a cloud, are major unsolved concerns. This paper focuses on the security and privacy requirements related to data flow in MIoT. In addition, we make in-depth study on the existing solutions to security and privacy issues, together with the open challenges and research issues for future work.
Currently, medical institutes generally use EMR to record patient's condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.