The iron and steel industry has made an important contribution to China’s economic development, and sinter accounts for 70–80% of the blast furnace feed charge. However, the average grade of domestic iron ore is low, and imported iron ore is easily affected by transportation and price. The intelligent ore blending model with an intelligent algorithm as the core is studied. It has a decisive influence on the development of China’s steel industry. This paper first analyzes the current situation of iron ore resources, the theory of sintering ore blending, and the difficulties faced by sintering ore blending. Then, the research status of the neural network algorithms, genetic algorithms, and particle swarm optimization algorithms in the intelligent ore blending model is analyzed. On the basis of the neural network algorithm, genetic algorithm and particle swarm algorithm, linear programming method, stepwise regression analysis method, and partial differential equation are adopted. It can optimize the algorithm and make the model achieve better results, but it is difficult to adapt to the current complex situation of sintering ore blending. From the sintering mechanism, sintering foundation characteristics, liquid phase formation capacity of the sinter, and the influencing factors of sinter quality were studied, it can carry out intelligent ore blending more accurately and efficiently. Finally, the research of intelligent sintering ore blending model has been prospected. On the basis of sintering mechanism research, combined with an improved intelligent algorithm. An intelligent ore blending model with raw material parameters, equipment parameters, and operating parameters as input and physical and metallurgical properties of the sinter as output is proposed.
The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO2, TiO2, Al2O3, P, Mn, Na2O, K2O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.