BackgroundCongenital anomalies are the leading cause of early neonatal death in neonatal intensive care units (NICUs), but the genetic causes are unclear. This study aims to investigate the genetic causes of infant deaths in a NICU in China.MethodsNewborns who died in the hospital or died within 1 week of discharge were enrolled from Children’s Hospital of Fudan University between January 1, 2015 and December 31, 2017. Whole exome sequencing was performed in all patients after death.ResultsThere were 223 deceased newborns with a median age at death of 13 days. In total, 44 (19.7%) infants were identified with a genetic finding, including 40 with single nucleotide variants (SNVs), two with CNVs and two with both SNVs and CNVs. Thirteen (31%, 13/42) patients with SNVs had medically actionable disorders based on genetic diagnosis, which included 10 genes. Multiple congenital malformation was identified as the leading genetic cause of death in NICUs with 13 newborns identified with variants in genes related to multiple congenital malformations. For newborns who died on the first day, the most common genetic cause of death was major heart defects, while metabolic disorders and respiratory failure were more common for newborns who died in the first 2 weeks.ConclusionOur study shows genetic findings among early infant deaths in NICUs and provides critical genetic information for precise genetic counselling for the families. Effective therapies enable the improvement of more than a quarter of newborns with molecular diagnoses if diagnosed in time.
Aims: Persistent pulmonary hypertension of the newborn (PPHN) is characterized by sustained high levels of pulmonary vascular resistance after birth with etiology unclear; Arterial blood oxygen saturation of Tibetan newborns at high latitudes is higher than that of Han newborns at low latitudes, suggesting that genetic adaptation may allow sufficient oxygen to confer Tibetan populations with resistance to pulmonary hypertension; We have previously identified genetic factors related to PPHN through candidate gene sequencing; In this study, we first performed whole exome sequencing in PPHN patients to screen for genetic-related factors. Methods and results: In this two-phase genetic study, we first sequenced the whole exome of 20 Tibetan PPHN patients and compared it with the published genome sequences of 50 healthy high-altitude Tibetanshypoxia-related genes, a total of 166 PPHN-related variants were found, of which 49% were from 43 hypoxia-related genes; considering many studies have shown that the differences in the genetic background between Tibet and Han are characterized by hypoxia-related genetic polymorphisms, so it is necessary to further verify whether the association between hypoxiarelated variants and PPHN is independent of high-altitude life. During the validation phase, 237 hypoxia-related genes were sequenced in another 80 Han PPHN patients living in low altitude areas, including genes at the discovery stage and known hypoxia tolerance, of which 413 variants from 127 of these genes were shown to be significantly associated with PPHN.hypoxia-related genes. Conclusions: Our results indicates that the association of hypoxia-related genes with PPHN does not depend on highaltitude life, at the same time, 21 rare mutations associated with PPHN were also found, including three rare variants of the tubulin tyrosine ligase-like family member 3 gene (TTLL3:p.E317K, TTLL3:p.P777S) and the integrin subunit alpha M gene (ITGAM:p.E1071D). These novel findings provide important information on the genetic basis of PPHN.
Three‐dimensional (3D) tumor has been considered as the best in vitro model for cancer research. In recent years, various methods have been developed to controllable prepare multisize 3D tumors. Nonetheless, reported technologies are still problematic and difficult to produce 3D tumors with highly uniform size and cell content. Here, a novel and simple microsphere‐based mold approach is proposed to rapidly fabricate spherical microwell arrays for multisize 3D tumors formation, culture, and recovery. Larger amounts of HepG2 3D tumors with excellent quality and uniformity can be efficiently generated using this method. In addition, the tumor size can also be simply controlled by adjusting the diameter of the microwell arrays. All experimental results indicated that the proposed method offers a promising platform to generate and recover highly controlled multisize 3D tumors for various cell‐based biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.