Background Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF). Results Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy ( R 2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics. Conclusions Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.
LabVIEW programs have been widely applied to instrument control for various applications in engineering. In this paper, carbon nanotube (CNT) assembly by dielectrophoresis (OEP) is investigated and LabVIEW is used to control the OEP for increased degree of process automation. Real-time electrode gap impedance is monitored during OEP and is set as feedback control signal to stop the process. A precision LCR meter generates an alternating current (AC) voltage for OEP and simultaneously measures the gap impedance. Through calling some main performance programs in LabVIEW, the LCR meter is initialized and the code can be designed and read into the control programs via the general purpose interface bus (GPIB) communication. The impedance decreases suddenly when CNTs are deposited across the gap.The control programs contribute significantly to realizing CNT assembly with specific requirements such as with a predefined assembly resistance, a predefined assembly time or a predefined small number of CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.