Background: Accumulating evidence shows that high fat diet is closely associated with inflammatory bowel disease. However, the effects and underlying mechanisms of maternal high fat diet (MHFD) on the susceptibility of offspring to colitis in adulthood lacks confirmation.Methods: C57BL/6 pregnant mice were given either a high fat (60 E% fat, MHFD group) or control diet [10 E% fat, maternal control diet (MCD) group] during gestation and lactation. The intestinal development, mucosal barrier function, microbiota, and mucosal inflammation of 3-week old offspring were assessed. After weaning all mice were fed a control diet until 8 weeks of age when the microbiota was analyzed. Offspring were also treated with 2% DSS solution for 5 days and the severity of colitis was assessed.Results: The offspring in MHFD group were significantly heavier than those in MCD group only at 2–4 weeks of age, while no differences were found in the body weight between two groups at other measured time points. Compared with MCD group, MHFD significantly inhibited intestinal development and disrupted barrier function in 3-week old offspring. Although H&E staining showed no obvious microscopic inflammation in both groups of 3-week old offspring, increased production of inflammatory cytokines indicated low-grade inflammation was induced in MHFD group. Moreover, fecal analysis of the 3-week old offspring indicated that the microbiota compositions and diversity were significantly changed in MHFD group. Interestingly after 5 weeks consumption of control diet in both groups, the microbiota composition of offspring in MHFD group was still different from that in MCD group, although the bacterial diversity was partly recovered at 8 weeks of age. Finally, after DSS treatment in 8-week old offspring, MHFD significantly exacerbated the severity of colitis and increased the production of proinflammatory cytokine.Conclusions: Our data reveal that MHFD in early life can inhibit intestinal development, induce dysbiosis and low-grade inflammation and lead to the disruption of intestinal mucosal barrier in offspring, and enhance DSS-induced colitis in adulthood.
Nonalcoholic fatty liver disease (NAFLD), as a common chronic liver disorder, is prevalent in the world. Recent evidence demonstrates that the "gut-liver axis" is related well to the progression of NAFLD, which regards gut microbiota and the intestinal barrier as two critical factors correlated with NAFLD. Diammonium glycyrrhizinate (DG), a compound of the natural bioactive pentacyclic triterpenoid glycoside, is the main component of licorice root extracts. The anti-inflammatory and liver protection effects of DG have already been reported, but to date, the mechanism has not been fully elucidated. In this research, we observed that DG reduced body weight, liver steatosis, as well as hepatic inflammation in NAFLD model mice induced by a high-fat diet. Illumina sequencing of the 16S rRNA revealed that DG intervention notably altered the composition of the gut microbiota in NAFLD mice. The richness of gut microbiota was significantly increased by DG. Specifically, DG reduced the Firmicutes-to- Bacteroidetes ratio and the endotoxin-producing bacteria such as Desulfovibrio and elevated the abundance of probiotics such as Proteobacteria and Lactobacillus. DG could augment the levels of short-chain fatty acid (SCFA)-producing bacteria such as Ruminococcaceae and Lachnospiraceae and promote SCFA production. In addition, DG supplementation dramatically alleviated the intestinal low-grade inflammation. Meanwhile, DG improved the expression of tight junction proteins, the goblet cell number, and mucin secretion and sequentially enhanced the function of intestinal barrier. Collectively, the prevention of NAFLD by DG might be mediated by modulating gut microbiota and restoring the intestinal barrier.
The prevalence of colorectal cancer (CRC) has markedly increased worldwide in the last decade. Alterations of bile acid metabolism and gut microbiota have been reported to play vital roles in intestinal carcinogenesis. About trillions of bacteria have inhabited in the human gut and maintained the balance of host metabolism. Bile acids are one of numerous metabolites that are synthesized in the liver and further metabolized by the gut microbiota, and are essential in maintaining the normal gut microbiota and lipid digestion. Multiple receptors such as FXR, GPBAR1, PXR, CAR and VDR act as sensors of bile acids have been reported. In this review, we mainly discussed interplay between bile acid metabolism and gut microbiota in intestinal carcinogenesis. We then summarized the critical role of bile acids receptors involving in CRC, and also addressed the rationale of multiple interventions for CRC management by regulating bile acids–microbiota axis such as probiotics, metformin, ursodeoxycholic acid and fecal microbiota transplantation. Thus, by targeting the bile acids–microbiota axis may provide novel therapeutic modalities in CRC prevention and treatment.
Background: Nonalcoholic fatty liver disease (NAFLD) is considered to be associated with diet and gut dysbiosis. Excessive sucralose can induce gut dysbiosis and negatively affect host health. Maternal diet shapes the microbial communities of neonate and this effect continues in later life. We aimed to investigate the effects of maternal sucralose (MS) intake on the susceptibility of offspring to hepatic steatosis in adulthood. Methods: C57BL/6 pregnant mice were randomized into MS group (MS during gestation and lactation) and maternal control (MC) group (MC diet). After weaning, all offspring were fed a control diet until 8 weeks of age, and then treated with a high-fat diet (HFD) for 4 weeks. The intestinal development, mucosal barrier function, and gut microbiota were assessed in the 3-week-old offspring. Moreover, the severity of hepatic steatosis, serum biochemistry, lipid metabolism, and gut microbiota was then assessed in the 12th week. Results: MS significantly inhibited intestinal development and disrupted barrier function in 3-weekold offspring. MS also induced intestinal low-grade inflammation, significantly changed the compositions and diversity of gut microbiota including reducing butyrate-producing bacteria and cecal butyrate production with down-regulation of GPR43. Mechanically, blocking GPR43 blunted the antiinflammatory effect of one of the butyrate-producing bacteria, Clostridium butyricum in vitro. After HFD treatment, MS exacerbated hepatic steatosis, and disturbed fatty acid biosynthesis and metabolism, accompanied by inducing gut dysbiosis compared with MC group. Conclusions:MS intake inhibits intestinal development, induces gut dysbiosis in offspring through down-regulation of GPR43, and exacerbates HFD-induced hepatic steatosis in adulthood.
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.