All‐solid‐state lithium metal batteries (ASSLMBs) stand out for the next generation of energy storage system. However, the further realization is severely hampered by the lithium dendrite formation in solid state electrolytes (SSEs), by mechanisms that remain controversial. Herein, with the aid of experimental and theoretical approaches, the origin of dendrite formation in representative LiBH4 SSE, which is thermodynamically stable with the Li metal, suppressing the side reaction between Li and SSE is elucidated. It is demonstrated that upon diffusion, Li+ encounters an electron, and is subsequently reduced to Li0 within the grain boundary/pore of SSE, eventually leading to short circuit. Thus, introducing LiF with the ability of interstitial filling and low electronic conductivity into SSE is the effective countermeasure, and as expected, with the addition of LiF, the critical current density (CCD) increases by 235% compared to the value of pure LiBH4. The TiS2|LiBH4–LiF|Li ASSLMBs manifest a reversible capacity of 137 mAh g−1 at 0.4 C upon 60 cycles. These findings not only unravel critical issues in Li dendrite formation in SSE, but also propose the countermeasure.
All-solid-state lithium-ion batteries (ASSLIBs) are receiving tremendous attention for safety concerns over liquid system. However, current ASSLIBs still suffer from poor cycling and rate performance because of unfavorable interfacial contact between solid electrolyte and electrodes, especially in the alloybased anode. To wet the solid electrode/electrolyte interface, accommodate volume change, and further boost kinetics, liquid metal Ga is introduced into the representative Sb anode, and its corresponding role is comprehensively revealed by experimental results and theoretical calculations for the first time. In addition to interface contact and strain accommodation, with the aid of in situ generation of liquid metal Ga, the lithiation/de-lithiation activity of Sb is stimulated, showing outstanding rate and cycling performance in half cells. Furthermore, benefited from the in situ chemical reaction, TiS 2 powder can be directly used to construct a novel "Li-free" TiS 2 |LiBH 4 |GaSb full cell, which exhibits an outstanding capacity retention of 226 mA h g −1 after 1000 cycles at a current density of 0.5 A g −1 . This work provides guidance for implementing future rational design of alloy anodes within ASSLIBs.
Developing cheap and efficient transition metal-based catalysts for the oxygen evolution reaction (OER) plays the key role in large-scale implementation of hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.