In this work, molecular dynamics simulations are employed to study the nanotribological process of nickel-based polycrystalline superalloy coating. A series of simulations were carried out using the method of repeated friction to explore the influence of frictional force, friction coefficient, grinding groove morphology, wear scar depth, debris flow direction, subsurface damage degree and evolution of defects during the nano-friction process. In addition, the change mechanism of different grain sizes on wear scar depth, frictional force, friction coefficient, and internal damage in the repeated friction process is also explored. The results show that the frictional force is related to the direction of the dislocation slip, and that the friction coefficient change is related to the number of repeated frictions. Moreover, it is observed that the grinding ball has a shunting effect on the formed wear debris atoms, and the shunt point is located at the maximum horizontal radius. We reveal that the grain boundary structure has a strengthening effect. When the grinding ball rubs to the grain boundary, the nucleation of dislocation defects inside the workpiece is obviously hindered by it. Simultaneously, we also find that the closer the subsurface is to the bottom of the grinding ball, the greater the degree of damage to the workpiece by friction. Furthermore, with the grain size decreases that the material begins to soften, resulting in a decrease of frictional force, friction coefficient, and smaller defects are formed inside the workpiece. The research of this work can better clarify the microscopic mechanism of the polycrystalline friction process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.