Aim:The aim was to develop a high-performance computer-aided diagnosis (CAD) system with image processing and pattern recognition in diagnosing pancreatic cancer by using endosonography images.Materials and Methods:On the images, regions of interest (ROI) of three groups of patients (<40, 40-60 and >60) were extracted by experts; features were obtained from images using three different techniques and were trained separately for each age group with an Artificial Neural Network (ANN) to diagnose cancer. The study was conducted on endosonography images of 202 patients with pancreatic cancer and 130 noncancer patients.Results:122 features were identified from the 332 endosonography images obtained in the study, and the 20 most appropriate features were selected by using the relief method. Images classified under three age groups (in years; <40, 40-60 and >60) were tested via 200 random tests and the following ratios were obtained in the classification: accuracy: 92%, 88.5%, and 91.7%, respectively; sensitivity: 87.5%, 85.7%, and 93.3%, respectively; and specificity: 94.1%, 91.7%, and 88.9%, respectively. When all the age groups were assessed together, the following values were obtained: accuracy: 87.5%, sensitivity: 83.3%, and specificity: 93.3%.Conclusions:It was observed that the CAD system developed in the study performed better in diagnosing pancreatic cancer images based on classification by patient age compared to diagnosis without classification. Therefore, it is imperative to take patient age into consideration to ensure higher performance.
Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.