Autonomous robot navigation has become a crucial concept in industrial development for minimizing manual tasks. Most of the existing robot navigation systems are based on the perceived geometrical features of the environment, with the employment of sensory devices including laser scanners, video cameras, and microwave radars to build the environment structure. However, scene understanding is a significant issue in the development of robots that can be controlled autonomously. The semantic model of the indoor environment offers the robot a representation closer to the human perception, and this enhances navigation tasks and human–robot interaction. In this paper, we propose a low-cost and low-memory framework that offers an improved representation of the environment using semantic information based on LiDAR sensory data. The output of the proposed work is a reliable classification system for indoor environments with an efficient classification accuracy of 97.21% using the collected dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.