Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as an antibody label to increase the fluorescence signal and sensitivity of the immunoassays. Epoxy-modified glass slides were selected as the substrate for the production of 4 × 4 coating antigen microarrays. With this signal-enhancing system, competition curves for 17β-estradiol (E2), benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were obtained individually on the protein microarray. The IC(50) and calculated limit of detection (LOD) are 0.32 μg L(-1) and 0.022 μg L(-1) for E2, 37.2 μg L(-1) and 24.5 μg L(-1) for BaP, and 31.6 μg L(-1) and 2.8 μg L(-1) for BDE-47, respectively. LOD of E2 is 14-fold lower than the value reported in a previous study using Cy3 labeled antibody (Du et al., Clin. Chem, 2005, 51, 368-375). The results of the microarray immunoassay were within 15% of chromatographic analysis for all three pollutants in spiked river water samples, thus verifying the immunoassay. Simultaneous detection of E2, BaP and BDE-47 in one sample was demonstrated. There was no cross-reaction in the immunoassay between these three environmental chemicals. These results suggest that microarray-based immunoassays with DNA/dye conjugate labels are useful tools for the rapid, sensitive, and high throughput screening of multiple environmental contaminants.
Sensitive simultaneous electrochemical sensing of phytohormones indole-3-acetic acid and salicylic acid based on a novel poly(L-Proline) nanoparticles–carbon dots composite consisting of multiwalled carbon nanotubes was reported in this study. The poly(L-Proline) nanoparticles–carbon dots composite was facilely prepared by the hydrothermal method, and L-Proline was used as a monomer and carbon source for the preparation of poly(L-Proline) nanoparticles and carbon dots, respectively. Then, the poly(L-Proline) nanoparticles–carbon dots–multiwalled carbon nanotubes composite was prepared by ultrasonic mixing of poly(L-Proline) nanoparticles–carbon dots composite dispersion and multiwalled carbon nanotubes. Scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy, energy dispersive spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry were used to characterize the properties of the composite. poly(L-Proline) nanoparticles were found to significantly enhance the conductivity and sensing performance of the composite. Under optimal conditions, the composite-modified electrode exhibited a wide linear range from 0.05 to 25 μM for indole-3-acetic acid and from 0.2 to 60 μM for salicylic acid with detection limits of 0.007 μM and 0.1 μM (S/N = 3), respectively. In addition, the proposed sensor was also applied to simultaneously test indole-3-acetic acid and salicylic acid in real leaf samples with satisfactory recovery.
A method to determine residues of the three acid herbicides, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, and 3,6-dichloro-2-methoxybenzoic acid (dicamba), in tobacco using LC/MS/MS is presented. Because these herbicide residues in tobacco might exist in different forms (free acid, salt, and ester), tobacco samples were first pretreated by alkaline hydrolysis and then the pH was adjusted in order to convert the residues completely to their free acid forms. Dichloromethane extraction and dispersive SPE using C18 sorbent were carried out before LC/MS/MS analysis, and quantification was performed using the internal standard method. Linearity was good for all analytes (R(2) ≥ 0.999) in the concentration range of 0.02 to 0.5 mg/kg. LODs were below 0.05 mg/kg. Recoveries ranged from 80.4 to 93.5%, and RSD was below 10%. This simple, efficient, and sensitive method can be applied to the determination of residues of the three acid herbicides in tobacco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.