Superhard materials are among the most scarce functional inorganic solids in existence. Indeed, recent research suggested that less than 0.1% of all known materials are likely to have a Vickers hardness ≥40 GPa. Here, an anomaly detection framework is created to treat these materials as rare occurrences by encoding and reconstructing the input composition and crystal structure information without supervision. The resulting model can quantitatively identify outliers from "normal" behaving materials, leading to the discovery of materials with exceptional properties such as a superhard response. Moreover, examining the difference between the encoded and decoded crystal structure provides fundamental insights into the crystal-chemical origin of hardness. The presented methodology is ultimately generalizable, enabling the design of other outlier materials with rare and unexpected physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.