Continuous-variable quantum key distribution (CVQKD) offers extraordinary superiority of sharing keys remotely by the use of standard telecom components, thereby promoting cost-effective and high-performance metropolitan applications. On the other hand, high-rate introduced spectrum broadening has pushed CVQKD from single-mode to continuous-mode region, resulting in the adoption of modern digital signal processing (DSP) technologies to recover quadrature information from continuous-mode quantum states. However, the security proof of DSP involving multi-point processing is a missing step. Here we propose a generalized method of analyzing continuous-mode states processing by linear DSP via temporal-modes theory. The construction of temporal modes plays a key role in reducing the security proof to single-mode scenarios. The proposed practicality-oriented security analysis method paves the way to build classical compatible digital CVQKD.
Continuous-variable quantum key distribution (CVQKD) offers the specific advantage of sharing keys remotely by the use of standard telecom components, thereby promoting cost-effective and high-performance metropolitan applications. Nevertheless, the introduction of high-rate spectrum broadening has pushed CVQKD from a single-mode to a continuous-mode region, resulting in the adoption of modern digital signal processing (DSP) technologies to recover quadrature information from continuous-mode quantum states. However, the security proof of DSP involving multi-point processing is a missing step. Here, we propose a generalized method of analyzing continuous-mode state processing by linear DSP via temporal modes theory. The construction of temporal modes is key in reducing the security proof to single-mode scenarios. The proposed practicality oriented security analysis method paves the way for building classical compatible digital CVQKD.
The compensation process for the state of polarization (SOP) from quantum signal plays an important role in the practical implementation of continuous-variable quantum key distribution (CV-QKD). In contrast to the previous scheme using an expensive digital dynamic polarization controller, we choose a cheaper manual polarization controller interfaced with a digital algorithm based on Kalman filter to achieve compensation of the polarization loss under the condition that the SOP of the fiber is relatively stable. This paper also enumerates the details of other digital signal processing method to achieve final secret key rate. And a pilot-sequential Gaussian modulated coherent state (GMCS) continuous-variable quantum key distribution system with a local local oscillator (LLO) is experimentally implemented based on the analysis of excess noise. Finally, the experimental results show that the method of polarization loss compensation takes advantages in maintaining the stability of the final secret key rate. And a secret key rate of 110 kbps is achieved within 20 km optical fiber (with 4 dB loss) under the finite-size block of 1 × 10 6 during a more extended time in the laboratory.
To meet the demand of flexible access for high-precision synchronization frequency, we demonstrate multi-node stable radio frequency (RF) dissemination over a long-distance optical fiber. Stable radio frequency signals can be extracted at any node along the optical fiber, not just at the endpoint. The differential mixing structure (DMS) is employed to avoid the frequency harmonic leakage and enhance the precision. The phase-locked loop (PLL) provides frequency reference for the DMS while improving the signal to noise ratio (SNR) of dissemination signal. We measure the frequency instability of multi-node stable frequency dissemination system (MFDS) at different locations along the 2,000 km optical fiber. The measured short-term instability with average time of 1 s are 1.90 × 10−14 @ 500 km, 2.81 × 10−14 @ 1,000 km, 3.46 × 10−14 @ 1,500 km, and 3.84 × 10−14 @ 2,000 km respectively. The long-term instability with average time of 10,000 s are basically the same at any position of the optical fiber, which is about (6.24 ± 0.05) × 10−17. The resulting instability is sufficient for the propagation of precision active hydrogen masers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.