DEtection TRansformer (DETR) is a recently proposed method that streamlines the detection pipeline and achieves competitive results against two-stage detectors such as Faster-RCNN. The DETR models get rid of complex anchor generation and post-processing procedures thereby making the detection pipeline more intuitive. However, the numerous redundant parameters in transformers make the DETR models computation and storage intensive, which seriously hinder them to be deployed on the resources-constrained devices. In this paper, to obtain a compact end-to-end detection framework, we propose to deeply compress the transformers with low-rank tensor decomposition. The basic idea of the tensor-based compression is to represent the large-scale weight matrix in one network layer with a chain of low-order matrices. Furthermore, we propose a gated multi-head attention (GMHA) module to mitigate the accuracy drop of the tensor-compressed DETR models. In GMHA, each attention head has an independent gate to determine the passed attention value. The redundant attention information can be suppressed by adopting the normalized gates. Lastly, to obtain fully compressed DETR models, a low-bitwidth quantization technique is introduced for further reducing the model storage size. Based on the proposed methods, we can achieve significant parameter and model size reduction while maintaining high detection performance. We conduct extensive experiments on the COCO dataset to validate the effectiveness of our tensor-compressed (tensorized) DETR models. The experimental results show that we can attain 3.7 times full model compression with 482 times feed forward network (FFN) parameter reduction and only 0.6 points accuracy drop.
There are two research hotspots for improving performance and energy efficiency of the inference phase of Convolutional neural networks (CNNs). The first one is model compression techniques while the second is hardware accelerator implementation. To overcome the incompatibility of algorithm optimization and hardware design, this paper proposes HFOD, a hardware-friendly quantization method for object detection on embedded FPGAs. We adopt a channel-wise, uniform quantization method to compress YOLOv3-Tiny model. Weights are quantized to 2-bit while activations are quantized to 8-bit for all convolutional layers. To achieve highly-efficient implementations on FPGA, we add batch normalization (BN) layer fusion in quantization process. A flexible, efficient convolutional unit structure is designed to utilize hardware-friendly quantization, and the accelerator is developed based on an automatic synthesis template. Experimental results show that the resources of FPGA in the proposed accelerator design contribute more computing performance compared with regular 8-bit/16-bit fixed point quantization. The model size and the activation size of the proposed network with 2-bit weights and 8-bit activations can be effectively reduced by 16× and 4× with a small amount of accuracy loss, respectively. Our HFOD method can achieve 90.6 GOPS on PYNQ-Z2 at 150 MHz, which is 1.4× faster and 2× better in power efficiency than peer FPGA implementation on the same platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.