The rapid response characteristics and high-speed growth of electric vehicles (EVs) demonstrate its potential to provide auxiliary frequency regulation services for independent system operators through vehicle-to-grid (V2G). However, due to the spatiotemporal random dynamics of travel behavior, it is challenging to evaluate the ability of EV cluster to provide ancillary services under the premise of reaching the expected state of charge (SOC) level. To address this issue, a novel calculation model of charge and discharge capacity of EV cluster based on trip chain with excellent parallel computing performance is presented in this work. Following the introduction of the characteristic variables of the proposed trip chain model, the user's continuous travel behavior in a time scale of several weeks is simulated. In particular, a bidirectional V2G scheduling strategy based on the five-zone map is designed to guide the charging and discharging behavior of EVs, where the expected SOC levels are guaranteed. The results of a 3-week travel simulation verify the effectiveness of the presented model in coordinating the V2G scheme and calculating the charge and discharge capacity of the EV cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.