NONCODE (http://www.bioinfo.org/noncode/) is an interactive database that aims to present the most complete collection and annotation of non-coding RNAs, especially long non-coding RNAs (lncRNAs). The recently reduced cost of RNA sequencing has produced an explosion of newly identified data. Revolutionary third-generation sequencing methods have also contributed to more accurate annotations. Accumulative experimental data also provides more comprehensive knowledge of lncRNA functions. In this update, NONCODE has added six new species, bringing the total to 16 species altogether. The lncRNAs in NONCODE have increased from 210 831 to 527,336. For human and mouse, the lncRNA numbers are 167,150 and 130,558, respectively. NONCODE 2016 has also introduced three important new features: (i) conservation annotation; (ii) the relationships between lncRNAs and diseases; and (iii) an interface to choose high-quality datasets through predicted scores, literature support and long-read sequencing method support. NONCODE is also accessible through http://www.noncode.org/.
Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, employs the transcription activator-like effectors (TALEs) to induce the expression of the OsSWEET family of putative sugar transporter genes, which function in conferring disease susceptibility (S) in rice plants. To engineer broadspectrum bacterial blight resistance, we used CRISPR/Cas9-mediated gene editing to disrupt the TALEbinding elements (EBEs) of two S genes, OsSWEET11 and OsSWEET14, in rice cv. Kitaake, which harbors the recessive resistance allele of Xa25/OsSWEET13. The engineered rice line MS14K exhibited broadspectrum resistance to most Xoo strains with a few exceptions, suggesting that the compatible strains may contain new TALEs. We identified two PthXo2-like TALEs, Tal5 LN18 and Tal7 PXO61 , as major virulence factors in the compatible Xoo strains LN18 and PXO61, respectively, and found that Xoo encodes at least five types of PthXo2-like effectors. Given that PthXo2/PthXo2.1 target OsSWEET13 for transcriptional activation, the genomes of 3000 rice varieties were analyzed for EBE variationsin the OsSWEET13 promoter, and 10 Xa25-like haplotypes were identified. We found that Tal5 LN18 and Tal7 PXO61 bind slightly different EBE sequences in the OsSWEET13 promoter to activate its expression. CRISPR/Cas9 technology was then used to generate InDels in the EBE of the OsSWEET13 promoter in MS14K to creat a new germplasm with three edited OsSWEET EBEs and broad-spectrum resistance against all Xoo strains tested. Collectively, our findings illustrate how to disarm TALE-S co-evolved loci to generate broad-spectrum resistance through the loss of effector-triggered susceptibility in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.