.There are many similarities between Brillouin optical time-domain analysis and phase-sensitive optical time-domain reflectometer in system topological structure. A multifunctional distributed optical fiber sensing system based on their similarities and the combination of their topological structure is presented. The system can monitor strain and temperature, as well as detect and locate the intrusions or disturbances along the sensing fiber. Suppose that X is the width of the optical pulse incident into the sensing fiber with the unit of nanosecond and Y is the minimum detectable distance with the unit of meter between two intrusions that are being detected simultaneously. The experiment results show that y changes linearly with x according to the equation: y=0.103x−0.452. By optimizing device parameters of the system, strain measurement accuracy of 3.17 μϵ and the temperature measurement accuracy of 0.45°C have been realized when the optical pulse width is 30 ns. On the other hand, two intrusions have been detected and located simultaneously with this multifunctional system. The results show that the pulse width and the minimum distance between two intrusions (Lmin) have a linear relationship. The theoretical analyses and the experiment results show it is applicable to use this multifunctional system for strain and temperature monitoring, and intrusion detecting.
Purpose
The purpose of this paper is to theoretically analyze and experimentally demonstrate the investigation of and present a kind of sensing system for monitoring simultaneous temperature and strain measurements based on highly nonlinear fiber (HNLF) and single mode fiber (SMF).
Design/methodology/approach
First, the stimulated Brillouin scattering (SBS) characteristics of the HNLF have been studied, including the Brillouin gain bandwidth, Brillouin gain center frequency and SBS threshold. Second, based on the Brillouin gain center frequency, the Brillouin frequency shift coefficients of strain and temperature in HNLF have been studied. Third, the sensing and signal interrogation scheme for simultaneous monitoring of temperature and strain with high resolution has been presented.
Findings
It is found that the HNLF has a wider Brillouin gain bandwidth. The SBS threshold of HNLF is 78 mW, which is much larger than 7.9 mW of SMF. Also, the Brillouin frequency shift coefficients of strain and temperature in HNLF are 0.0308 and 0.413 MHz/°C, respectively.
Originality/value
The larger threshold of SBS is useful to avoid SBS under certain situations that Spontaneous Brillouin Scattering is necessary and should be applied. The technique is based on the fact that the Brillouin frequency shift coefficients of strain and temperature in HNLF are different from those in SMF. Therefore, the two-parameter monitoring can be achieved by producing SBS and obtaining the back-scattering Brillouin signal light simultaneously in HNLF and SMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.