PurposeThis study aimed to investigate whether minocycline could influence alterations of microglial subtypes, the morphology of dendrites and dendritic spines, the microstructures of synapses and synaptic proteins, or even cognition outcomes in immature male mice following status epilepticus (SE) induced by kainic acid.MethodsGolgi staining was performed to visualize the dendrites and dendritic spines of neurons of the hippocampus. The microstructures of synapses and synaptic proteins were observed using transmission electron microscopy and western blotting analysis, respectively. Microglial reactivation and their markers were evaluated using flow cytometry. The Morris water maze (MWM) test was used to analyze spatial learning and memory ability.ResultsSignificant partial spines increase (predominate in thin spines) was observed in the dendrites of neurons after acute SE and partial loss (mainly in thin spines) was presented by days 14 and 28 post‐SE. The postsynaptic ultrastructure was impaired on the 7th and 14th days after SE. The proportion of M1 microglia increased significantly only after acute SE Similarly, the proportion of M2 microglia increased in the acute stage with high expression levels of all surface markers. In contrast, a decrease in M2 microglia and their markers was noted by day 14 post‐SE. Minocycline could reverse the changes in dendrites and synaptic proteins caused by SE, and increase the levels of synaptic proteins. Meanwhile, minocycline could inhibit the reactivation of M1 microglia and the expression of their markers, except for promoting CD200R. In addition, treatment with minocycline could regulate the expression of M2 microglia and their surface markers, as well as ameliorating the impaired spatial learning and memory on the 28th day after SE.ConclusionsDendritic spines and microglia are dynamically changed after SE. Minocycline could ameliorate the impaired cognition in the kainic acid‐induced mouse model by decreasing the damage to dendrites and altering microglial reactivation.
The effects of advanced maternal age (AMA) on the neurodevelopment of offspring are becoming increasingly important. Myelination is an important aspect of brain development; however, a limited number of studies have focused on the effects of AMA on myelination in offspring. The current study aims to evaluate the association between AMA and myelin sheath development in offspring. We studied the learning and memory function of immature offspring using the novel object recognition test. Then, we investigated the expression of myelin basic protein (MBP) in the immature offspring of young (3-month-old) and old (12-month-old) female rats at different time points (14, 28, and 60 days) after birth with immunofluorescence and western blotting. The myelin sheath ultrastructure was observed with transmission electron microscopy in immature and mature offspring. Extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2) were investigated by western blot in immature offspring at the above time points. AMA impaired the memory function of offspring during early postnatal days. The MBP expression level gradually increased with postnatal development in the offspring of both the AMA and Control (Ctl) groups, but the MBP level in the offspring of the AMA group was lower than that of the Ctl group at 14 days after birth. In addition, the ultrastructure of the myelin sheath was defective in AMA offspring during the early postnatal period; however, the myelin sheath was not significantly affected in offspring during adulthood. Interestingly, ERK phosphorylation at 14 days after birth was lower in AMA offspring than in Ctl offspring. However, ERK phosphorylation at 28 days after birth was higher in AMA offspring than in Ctl offspring. The peak of ERK phosphorylation in the AMA group was abnormal and delayed. Our results indicated that AMA is associated with poor developmental myelin formation in offspring. The ERK signaling pathway may play an essential role in the adverse effects of AMA on the offspring myelin sheath development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.