Parking issues have been receiving increasing attention. An accurate parking occupancy prediction is considered to be a key prerequisite to optimally manage limited parking resources. However, parking prediction research that focuses on estimating the occupancy for various parking lots, which is critical to the coordination management of multiple parks (e.g., district-scale or city-scale), is relatively limited. This study aims to analyse the performance of different prediction methods with regard to parking occupancy, considering parking type and parking scale. Two forecasting methods, FM1 and FM2, and four predicting models, linear regression (LR), support vector machine (SVR), backpropagation neural network (BPNN), and autoregressive integrated moving average (ARIMA), were proposed to build models that can predict the parking occupancy of different parking lots. To compare the predictive performances of these models, real-world data of four parks in Shenzhen, Shanghai, and Dongguan were collected over 8 weeks to estimate the correlation between the parking lot attributes and forecast results. As per the case studies, among the four models considered, SVM offers stable and accurate prediction performance for almost all types and scales of parking lots. For commercial, mixed functional, and large-scale parking lots, FM1 with SVM made the best prediction. For office and medium-scale parking lots, FM2 with SVM made the best prediction.
In recent years, with the rapid development of China’s automobile industry, the number of vehicles in China has been increasing steadily. Vehicles represent a convenient mode of travel, but the growth rate of the number of urban motor vehicles far exceeds the construction rate of parking facilities. The continuous improvement of parking allocation methods has always been key for ensuring sustainable city management. Thus, developing an efficient and dynamic parking distribution algorithm will be an important breakthrough to alleviate the urban parking shortage problem. However, the existing parking distribution models do not adequately consider the influence of real-time changes in parking demand and supply on parking space assignment. Therefore, this study proposed a method for dynamic parking allocation using parking demand predictions and a predictive control method. A neural-network-based dynamic parking distribution model was developed considering seven influencing factors: driving duration, walking distance, parking fee, traffic congestion, possibility of finding a parking space in the target parking lot and adjacent parking lot, and parking satisfaction degree. Considering whether the parking spaces in the targeted parking lots are shared or not, two allocation modes—sharing mode and non-sharing mode—were proposed and embedded into the model. At the experimental stage, a simulation case and a real-time case were performed to evaluate the developed models. The experimental results show that the dynamic parking distribution model based on neural networks can not only allocate parking spaces in real time but also improve the utilisation rate of different types of parking spaces. The performance score of the dynamic parking distribution model for a time interval of 2–20 min was maintained above 80%. In addition, the distribution performance of the sharing mode was better than that of the non-sharing mode and contributed to a better overall effectiveness. This model can effectively improve the utilisation rate of resources and the uniformity of distribution and can reduce the failure rate of parking; thus, it significantly contributes to more smart and sustainable urban parking management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.