Named Entity Recognition (NER) is a fundamental task in natural language processing. In order to identify entities with nested structure, many sophisticated methods have been recently developed based on either the traditional sequence labeling approaches or directed hypergraph structures. Despite being successful, these methods often fall short in striking a good balance between the expression power for nested structure and the model complexity. To address this issue, we present a novel nested NER model named HIT. Our proposed HIT model leverages two key properties pertaining to the (nested) named entity, including (1) explicit boundary tokens and (2) tight internal connection between tokens within the boundary. Specifically, we design (1) Head-Tail Detector based on the multi-head selfattention mechanism and bi-affine classifier to detect boundary tokens, and (2) Token Interaction Tagger based on traditional sequence labeling approaches to characterize the internal token connection within the boundary. Experiments on three public NER datasets demonstrate that the proposed HIT achieves state-ofthe-art performance.
With the rapid development of text mining, many studies observe that text generally contains a variety of implicit information, and it is important to develop techniques for extracting such information. Named Entity Recognition (NER), the first step of information extraction, mainly identifies names of persons, locations, and organizations in text. Although existing neural-based NER approaches achieve great success in many language domains, most of them normally ignore the nested nature of named entities. Recently, diverse studies focus on the nested NER problem and yield state-of-the-art performance. This survey attempts to provide a comprehensive review on existing approaches for nested NER from the perspectives of the model architecture and the model property, which may help readers have a better understanding of the current research status and ideas. In this survey, we first introduce the background of nested NER, especially the differences between nested NER and traditional (i.e., flat) NER. We then review the existing nested NER approaches from 2002 to 2020 and mainly classify them into five categories according to the model architecture, including early rule-based, layered-based, region-based, hypergraph-based, and transition-based approaches. We also explore in greater depth the impact of key properties unique to nested NER approaches from the model property perspective, namely entity dependency, stage framework, error propagation, and tag scheme. Finally, we summarize the open challenges and point out a few possible future directions in this area. This survey would be useful for three kinds of readers: (i) Newcomers in the field who want to learn about NER, especially for nested NER. (ii) Researchers who want to clarify the relationship and advantages between flat NER and nested NER. (iii) Practitioners who just need to determine which NER technique (i.e., nested or not) works best in their applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.