The reverse micellar system of sodium bis(2-ethylhexyl) phosphate (NaDEHP)/isooctane/brine was used for liquidliquid extraction of proteins. We investigated the solubilization of cytochrorne-c and 0-chymotrypsin into the NaDEHP reverse micellar phase by varying the pH and NaCl concentration in the aqueous phase. At neutral pH and relatively low ionic strength, the proteins are extracted into the micellar phase with high yield. By contacting the micellar phase with a divalent cation (e.g., Ca") aqueous solution, the reverse micelles are destabilized and release the protein molecules back into an aqueous solution for recovery. This method separates the proteins from the surfactant with very high overall efficiencies.
The reverse micelle system of sodium di-2-ethylhexyl phosphate was used to extract aminoglycoside antibiotics, neomycin and gentamicin. The aminoglycosides can be efficiently extracted into a reverse micelle solution, and the antibiotics extracted into the micelle phase can readily be recovered back to a divalent cation aqueous solution, such as Ca2+. The transfer efficiency, %E, is heavily dependent on pH and salt concentration in the aqueous feed solution. %E decreases drastically with pH in the pH range 8.5-11, and declines with increasing (NH&SO, concentration. A simple transfer mechanism was proposed which suggests that the antibiotic molecules were extracted into the inner water cores of reverse micelles through attractive electrostatic interaction during forward transfer. In backward transfer, the antibiotics loaded in the micelle phase are released back to an aqueous phase through breaking up of the reverse micelles by using divalent cation solutions. The model is supported by the results of dynamic light scattering and infra-red spectroscopy study.
The reverse micelle system of sodium di-2-ethylhexyl phosphate was used to extract aminoglycoside antibiotics, neomycin and gentamicin. The aminoglycosides can be efficiently extracted into a reverse micelle solution, and the antibiotics extracted into the micelle phase can readily be recovered back to a divalent cation aqueous solution, such as Ca2+. The transfer efficiency, %E, is heavily dependent on pH and salt concentration in the aqueous feed solution. %E decreases drastically with pH in the pH range 8.5-11, and declines with increasing (NH&SO, concentration. A simple transfer mechanism was proposed which suggests that the antibiotic molecules were extracted into the inner water cores of reverse micelles through attractive electrostatic interaction during forward transfer. In backward transfer, the antibiotics loaded in the micelle phase are released back to an aqueous phase through breaking up of the reverse micelles by using divalent cation solutions. The model is supported by the results of dynamic light scattering and infra-red spectroscopy study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.