Rice (Oryza sativa L.) seedlings grown under nitrogen (N) deficiency conditions show a foraging response characterized by increased root length. However, the mechanism underlying this developmental plasticity is still poorly understood. In this study, the mechanism by which N deficiency influences rice seminal root growth was investigated. The results demonstrated that compared with the control (1 mM N) treatment, N deficiency treatments strongly promoted seminal root growth. However, the N deficiency-induced growth was negated by the application of zeatin, which is a type of cytokinin (CK). Moreover, the promotion of rice seminal root growth was correlated with a decrease in CK content, which was due to the N deficiency-mediated inhibition of CK biosynthesis through the down-regulation of CK biosynthesis genes and an enhancement of CK degradation through the up-regulation of CK degradation genes. In addition, the N deficiency-induced decrease in CK content not only enhanced the root meristem cell proliferation rate by increasing the meristem cell number via the down-regulation of OsIAA3 and up-regulation of root-expressed OsPLTs, but also promoted root cell elongation by up-regulating cell elongation-related genes, including root-specific OsXTHs and OsEXPs. Taken together, our data suggest that an N deficiency-induced decrease in CK content promotes the seminal root growth of rice seedlings by promoting root meristem cell proliferation and cell elongation.
The phytohormones ethylene and jasmonate play important roles in the adaption of rice plants to salt stress. However, the molecular interactions between ethylene and jasmonate on rice seminal root growth under salt stress is unknown. In this study, effects of NaCl on the homeostasis of ethylene and jasmonate and on the rice seminal root growth were investigated. Our results indicate that NaCl treatment promotes ethylene biosynthesis by up-regulating transcription of ethylene biosynthesis genes, whereas NaCl-induced ethylene cannot inhibit rice seminal root growth directly, but rather inhibits growth indirectly by promoting jasmonate biosynthesis. NaCl treatment also promotes jasmonate biosynthesis through an ethylene-independent pathway. Moreover, the analysis results of quantitative real-time PCR and confocal microscopy demonstrate that NaCl-induced jasmonate restricts root meristem cell proliferation by reducing meristem cell number and cell division activity via down-regulated transcription of OsPLT and cell division-related genes, respectively. Additionally, NaCl-induced jasmonate inhibits root cell elongation by down-regulating transcription of cell elongation-related genes, which in turn inhibits seminal root growth. Overall, salt stress promotes jasmonate biosynthesis through ethylene-dependent and -independent pathways in the rice seminal root, and salt-induced jasmonate inhibits the rice seminal root growth by inhibiting root meristem cell proliferation and root cell elongation under salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.