The effects of one-time basal application of different mixtures of slow-release urea (SRU) and conventional urea (CU) on yield and nitrogen use efficiency (NUE) of rice and wheat were investigated to determine the appropriate ratios of SRU to CU for one-time basal fertilization in a rice–wheat rotation farmland under full residue incorporation. A field plot experiment was used in this study. Six treatments were established as follows: CK (no nitrogen fertilizer applied), T0 (100% CU, 50% applied as basal fertilizer and 50% applied as jointing fertilizer), T3 (one-time basal application of SRU and CU mixture with 30% SRU), T5 (one-time basal application of SRU and CU mixture with 50% SRU), T7 (one-time basal application of SRU and CU mixture with 70% SRU), and T10 (one-time basal application of 100% SRU). The results showed that the combined application of SRU and CU increased the yields of rice and wheat. Treatment T7 resulted in the highest rice yield, and T3 resulted in the highest wheat yield, which were 25.6% and 29.4% higher, than those of treatment T0, respectively. Compared with treatment T0 (application of CU alone), the combined application of SRU and CU resulted in 27.4–96.5% and 22.8–57.1% higher NUE in rice and wheat, respectively.
The most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.
China is facing a shortage of arable land resources, and the mudflat salt-affected soil along the east coast of China is an important reserve arable land resource. In this study, we conducted a randomized field trial to investigate the effects of vermicompost application rate (0, 25, 50, 125, and 250 t ha−1) on barley growth and heavy metal accumulation in mudflat salt-affected soil. We found that vermicompost application decreased bulk density, electrical conductivity (EC), and pH of mudflat salt-affected soil while increasing its organic carbon, nitrogen, and phosphorus contents. With the increase in vermicompost application rate, the yield of grain and total biomass of barley plants increased. The yield of grain in the vermicompost application treatments of 25, 50, 125, and 250 t ha−1 increased by 66.0%, 226.0%, 340.0%, and 512.0%, respectively, relative to the control. In addition, the concentrations of heavy metals (Cd, Cr, Cu, and Zn) in mudflat salt-affected soil and barley plant increased as the vermicompost application rate increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.