The devil’s staircase, describing step-like function for two competing frequencies, is well known over a wide range of dynamic systems including Huyghens’ clocks, Josephson junction, and chemical reaction. In condensed matter physics, the devil’s staircase has been observed in spatially modulated structures, such as magnetic ordering. It draws widespread attentions because it plays a crucial role in the fascinating phenomena including phase-locking behaviors, commensurate-incommensurate phase transition, and spin-valve effect. Here, we report the observation of polymorphic phase transitions consisting of several steps in PbZrO 3 -based system—namely, electric devil’s staircase—originated from competing ferroelectric and antiferroelectric interactions. We fully characterize a specific electric dipole configuration by decomposing this competitive interaction in terms of basic structure and modulation function. Of particular interest is that the occurrence of many degenerate electric dipole configurations in devil’s staircase enables superior energy storage performance. These observations are of great significance for exploring more substantive magnetic-electric correspondence and engineering practical high-power antiferroelectric capacitors.
Antiferroelectric materials has become one of the most promising candidates for pulsed power capacitors. The polarization versus electric-field hysteresis loop is the key electrical property for evaluating their energy-storage performance. Here, we applied in situ biasing transmission electron microscopy to decode two representative energy-storage behaviors-namely, multiple and double hysteresis loopsin (Pb,La)(Zr,Sn,Ti)O 3 system. Simultaneous structural examination and domain/ defects observation establish a direct relationship between phase transitions and hysteresis loops. Sustaining a smaller period of modulated structure to a certain applied electric field and then undergoing additional transitions among varying antiferroelectric phases with increasing modulation periods before the final antiferroelectric-ferroelectric transition leads to the favorable multiple-loop configuration that realizes a high energystorage performance. Such phenomenon is described by a model in terms of defectdriven phase transition. The distinctive mechanisms of multiple phase transition will inspire future composition-design for high switch-fielding antiferroelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.