A neighboring boronate group in the substrate provides
a dramatic
rate acceleration in transmetalation to copper and thereby enables
organoboronic esters to participate in unprecedented site-selective
cross-couplings. This cross-coupling operates under practical experimental
conditions and allows for coupling between vicinal bis(boronic esters)
and allyl, alkynyl, and propargyl electrophiles as well as a simple
proton. Because the reactive substrates are vicinal bis(boronic esters),
the cross-coupling described herein provides an expedient new method
for the construction of boron-containing reaction products from alkenes.
Mechanistic experiments suggest that chelated cyclic ate complexes
may play a role in the transmetalation.
Chiral 1,2‐bimetallic reagents are useful motifs in synthetic chemistry. Although syn‐1,2‐bimetallic compounds can be prepared by alkene dimetallation, anti‐1,2‐bimetallics are still rare. The stereospecific 1,2‐metallate shift that occurs during conjunctive cross‐coupling is shown to enable a practical and modular approach to the catalytic synthesis of enantioenriched anti‐1,2‐borosilanes. In addition to reaction development, the synthetic utility of anti‐1,2‐borosilanes was investigated, including applications to the synthesis of anti‐1,2‐diols and anti‐1,2‐amino alcohols
Chiral 1,2‐bimetallic reagents are useful motifs in synthetic chemistry. Although syn‐1,2‐bimetallic compounds can be prepared by alkene dimetallation, anti‐1,2‐bimetallics are still rare. The stereospecific 1,2‐metallate shift that occurs during conjunctive cross‐coupling is shown to enable a practical and modular approach to the catalytic synthesis of enantioenriched anti‐1,2‐borosilanes. In addition to reaction development, the synthetic utility of anti‐1,2‐borosilanes was investigated, including applications to the synthesis of anti‐1,2‐diols and anti‐1,2‐amino alcohols
A Pt-catalyzed enantioselective hydrosilylation of (Z)-1,2-diborylethylene provides a 1,2-diboryl-1-silylalkane that can be used in catalytic crosscoupling reactions. Depending on the catalyst employed and the cross-coupling reaction conditions, the coupling can occur at either α or β relative to the silane center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.