Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation.
Peptide-based engineered hydrogel scaffolds present several advantages over traditional protein or polymeric hydrogels by imparting more robust control over hydrogel properties. In this manuscript, we report the synthesis and characterization of a leucine zipper (LZ) based self assembling hydrogel for use in tissue engineering applications. Although, LZ hydrogels posses several advantages, the stability of these hydrogels has always been elusive. In this study, we have standardized the procedure for creating a stable LZ hydrogel. Pore-size was tunable by altering the peptide concentration from 7% to 12% by weight. In order to create a microenvironment for cell adhesion, the LZ polypeptide was functionalized by the incorporation of the cell attachment RGD domain. In vivo implantation of the LZ scaffolds in a mouse model showed absence of foreign body reaction to the scaffold. In vivo experiments with human marrow stem cells (HMSCs) in immunocompromised mice showed the biological property of the hydrogel to promote cell attachment, proliferation and its ability to support neovascularization. Our results show for the first time, that it is possible to generate a functional and stable LZ scaffold that can be used in vivo for tissue engineering applications.
Purpose To test the clinical feasibility and usefulness of slip interface imaging (SII), a novel magnetic resonance elastography (MRE)-based method to identify and quantify the degree of tumor brain adhesion in patients with vestibular schwannomas. Materials and Methods With Institutional Review Board approval and after obtaining written informed consent, SII examinations were performed on nine patients with vestibular schwannomas. During the SII acquisition, a low-amplitude mechanical vibration is applied to the head with a pillow-like device placed in the head coil and the resulting shear waves are imaged by using a phase-contrast pulse sequence with motion-encoding gradients synchronized with the applied vibration. Imaging was performed on a 3-T MR system in less than 7 minutes. The acquired shear motion data were processed with two different algorithms (shear line analysis and calculation of octahedral shear strain [OSS]) to identify the degree of tumor-brain adhesion. Blinded to the SII results, neurosurgeons qualitatively assessed tumor adhesion at the time of tumor resection. Standard T2-weighted (T2W), FIESTA, and T2-FLAIR imaging were reviewed to identify the presence of cerebral spinal fluid (CSF) clefts around the tumors. The performance of the use of the CSF cleft and SII for predicting the degree of tumor adhesion was evaluated by using the kappa coefficient and McNemar's test. Results Of the nine patients, SII agreed with the intraoperative assessment of the degree of tumor adhesion in 8 cases (88.9%, [eight of nine], 95% confidence interval [CI]: 57%-98%), with 4/4, 3/3, and 1/2 cases correctly predicted as no adhesion, partial adhesion, and complete adhesion, respectively. However, the T2W, FIESTA, and T2-FLAIR images that used the CSF cleft sign to predict adhesion agreed with surgical findings in only 4 cases (44.4%, [four of nine], 95% CI: 19%-73%). The kappa coefficients indicate good agreement (0.82, 95% CI: 0.5-1) for the SII prediction versus surgical findings, but only fair agreement (0.21, 95% CI: −0.21-0.63) between the CSF cleft prediction and surgical findings. However, the difference between the SII prediction and the CSF cleft prediction was not significant (p=0.103, McNemar), likely because of the small sample size in this study. Conclusion SII can be used to predict the degree of tumor-brain adhesion of vestibular schwannomas and may provide a method to improve preoperative planning and determination of surgical risk in these patients.
Circulating extracellular vesicles (EVs) are a novel and emerging biomarker for nonalcoholic steatohepatitis (NASH). It has been demonstrated that total circulating EVs and hepatocyte‐derived EVs are elevated in male mice with diet‐induced NASH. How hepatocyte‐derived EVs change over time and other cellular sources of EVs in NASH have not been determined. Our objective was to define the quantitative evolution of hepatocyte‐derived, macrophage‐derived, neutrophil‐derived, and platelet‐derived EVs in male and female mice with dietary NASH. Fluorescently labeled antibodies and a nanoscale flow cytometer were used to detect plasma levels of EVs. Asialoglycoprotein receptor 1 (ASGR1) and cytochrome P450 family 2 subfamily E member 1 (CYP2E1) are markers of hepatocyte‐derived EVs; galectin 3 is a marker of macrophage‐derived EVs; common epitope on lymphocyte antigen 6 complex, locus G/C1 (Ly‐6G and Ly‐6C) is a marker of neutrophil‐derived EVs; and clusters of differentiation 61 (CD61) is a marker of platelet‐derived EVs. Nonalcoholic fatty liver disease activity score (NAS) was calculated using hematoxylin and eosin‐stained liver sections, and magnetic resonance imaging (MRI) was used for measurement of the fat fraction and elastography. Hepatocyte‐derived EVs increased in both male and female mice at 12 and 10 weeks of feeding, respectively, and remained elevated at 24 weeks in both male and female mice and at 48 weeks in male mice and 36 weeks in female mice. Macrophage‐ and neutrophil‐derived EVs were significantly elevated at 24 weeks of dietary feeding concomitant with the histologic presence of inflammatory foci in the liver. In fat‐, fructose‐, and cholesterol‐ (FFC) fed male mice, platelet‐derived EVs were elevated at 12, 24, and 48 weeks, whereas in female mice, platelet derived EVs were significantly elevated at 24 weeks. Hepatocyte‐, macrophage‐ and neutrophil‐derived EVs correlated well with the histologic NAS. Conclusion: Circulating cell‐type‐specific EVs may be a novel biomarker for NASH diagnosis and longitudinal follow up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.